Agaricus blazei Murrill não reduz a obesidade e a esteatose hepática, mas melhora a tolerância à glicose e reduz o colesterol hepático em camundongos obesos

Autores/as

DOI:

https://doi.org/10.52521/nutrivisa.v12i1.15731

Palabras clave:

cogumelos; doença hepática gordurosa não alcoólica; obesidade; fígado gorduroso.

Resumen

A obesidade está fortemente associada à Doença Hepática Esteatótica Associada à Disfunção Metabólica e a busca por novas abordagens terapêuticas é necessária. O cogumelo Agaricus blazei Murrill (ABM) possui compostos bioativos com potencial efeito metabólico, embora as evidências experimentais ainda sejam limitadas. Este estudo investigou os efeitos da suplementação com ABM sobre parâmetros metabólicos e hepáticos em camundongos obesos. Camundongos machos da linhagem C57BL/6 foram alimentados com dieta hiperlipídica (DH) durante oito semanas para indução da obesidade e, em seguida, alocados em três grupos: OB-CTL (controle, água), OB-ABM1 (ABM 10%) e OB-ABM2 (ABM 5%), tratados por gavagem diária durante 12 semanas, com manutenção da DH. Foram avaliados peso corporal, ingestão alimentar, adiposidade, glicemia, perfil lipídico plasmático e hepático, além da esteatose hepática. A suplementação com ABM não alterou o peso corporal, o consumo alimentar nem a deposição de gordura. Contudo, o grupo OB-ABM1 apresentou melhora na tolerância à glicose, evidenciada pela redução da área sob a curva no teste de tolerância à glicose. Não foram observadas alterações nos níveis plasmáticos de triglicerídeos e colesterol. No entanto, ambas as concentrações de ABM promoveram redução significativa do conteúdo de colesterol hepático, sem impacto sobre a esteatose macro ou microvesicular. Em conclusão, o ABM não preveniu a obesidade nem a esteatose hepática, mas exerceu efeitos benéficos modestos sobre a homeostase glicêmica e o metabolismo hepático de colesterol. Estudos adicionais são necessários para elucidar os mecanismos de ação e o potencial terapêutico do ABM em modelos de obesidade estabelecida.

 

Citas

ABDELMEGEED, M. A.; YOO, S.-H.; HENDERSON, L. E.; GONZALEZ, F. J.; WOODCROFT, K. J.; SONG, B.-J. PPARα Expression Protects Male Mice from High Fat–Induced Nonalcoholic Fatty Liver. The Journal of Nutrition, v. 141, n. 4, p. 603-610, 2011. doi: 10.3945/jn.110.135210.

BERNARDIS, L. L. Prediction of carcass fat, water and lean body mass from Lee's "nutritive ratio" in rats with hypothalamic obesity. Experientia, v. 26, n. 7, p. 789-90, 1970. doi: 10.1007/BF02232553.

COHEN, J. C.; HORTON, J. D.; HOBBS, H. H. Human fatty liver disease: old questions and new insights. Science, v. 332, n. 6037, p. 1519-23, 2011. doi: 10.1126/science.1204265.

DA SILVA, A. F.; SARTORI, D.; MACEDO, F. C. Jr.; RIBEIRO, L. R.; FUNGARO, M. H.; MANTOVANI, M. S. Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Human and Experimental Toxicology, v. 32, n. 6, p. 647–654, 2013. doi: 10.1177/0960327112468173.

ESLAM, M.; NEWSOME, P. N.; SARIN, S. K.; ANSTEE, Q. M.; TARGHER, G.; ROMERO-GOMEZ, M.; ZELBER-SAGI, S.; WONG, V. W.-S.; DUFOUR, J.-F.; SCHATTENBERG, J. M.; KAWAGUCHI, T.; ARRESE, M.; VALENTI, L.; SHIHA, G.; TIRIBELLI, C.; YKI-JÄRVINEN, H.; FAN, J.-G.; GRONBAEK, H.; YILMAZ, Y.; CORTEZ-PINTO, H.; OLIVEIRA, C. P.; BEDOSSA, P.; ADAMS, L. A.; ZHENG, M.-H.; FOUAD, Y.; CHAN, W.-K.; MENDEZ-SANCHEZ, N.; AHN, S. H.; CASTERA, L.; BUGIANESI, E.; RATZIU, V.; GEORGE, J. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. Journal of Hepatology, v. 73, n. 1, p. 202-209, 2020. doi: 10.1016/j.jhep.2020.03.039.

FIRENZUOLI, F.; GORI, L.; DI SIMONE, L.; MORSUILO, M. Internet information about herbal products and dietary supplements. Recenti progressi in medicina, v. 97, p. 189-92, 2006.

FIRENZUOLI, F.; GORI, L.; LOMBARDO, G. The Medicinal Mushroom Agaricus blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evidence-Based Complementary and Alternative Medicine, v. 5, n. 1, p. 3-15, 2008. doi: 10.1093/ecam/nem007.

FOLCH, J.; LEES, M.; SLOANE STANLEY, G. H. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, v. 226, n. 1, p. 497-509, 1957.

GEORGE, M.; RAJARAM, M.; SHANMUGAM, E. New and Emerging Drug Molecules Against Obesity. Journal of Cardiovascular Pharmacology and Therapeutics, v. 19, n. 1, p. 65-76, 2014. doi: 10.1177/1074248413508623.

GONÇALVES, J. L.; ROMA, E. H.; GOMES-SANTOS, A. C.; POLETTO, E.; DE CASTRO, T. P.; MANTOVANI, L. R.; SANTOS, A. S.; DE OLIVEIRA, H. C.; TIRAPELLI, C. R.; GRASSI-KASSISSE, D. M.; MANTOVANI, M. S.; BONFLEUR, M. L. Pro-inflammatory effects of the mushroom Agaricus blazei and its consequences on atherosclerosis development. European Journal of Nutrition, v. 51, p. 927–937, 2012. doi: 10.1007/s00394-011-0270-8.

HETLAND, G.; JOHNSON, E.; LYBERG, T.; BERNARDSHAW, S.; TRYGGESTAD, A. M. A.; GRINDE, B. Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer. Scandinavian Journal of Immunology, v. 68, p. 363-370, 2008. doi: 10.1111/j.1365-3083.2008.02157.x.

HOFFMAN, F.; BORETTO, E.; VITALE, S.; GONZALEZ, V.; VIDAL, G.; PARDO, M. F.; FLORES, M. F.; GARCIA, F.; BAGNIS, G.; QUEIROZ, O. C. M.; RABAGLINO, M. B. Maternal nutritional restriction during late gestation impairs development of the reproductive organs in both male and female lambs. Theriogenology, v. 108, p. 331–338, 2018. doi: 10.1016/j.theriogenology.2017.12.016.

HSU, C.H.; LIAO, Y.L.; LIN, S.C.; HWANG, K.C.; & CHOU, P. (2007). The mushroom Agaricus Blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. Journal of alternative and complementary medicine v. 13(1), p. 97–102, 2007. doi: 10.1089/acm.2006.6054.

HUANG, K.; EL-SEEDI, H. R.; XU, B. Critical review on chemical compositions and health-promoting effects of mushroom Agaricus blazei Murill. Current Research in Food Science, v. 5, p. 2190-2203, 2022. doi: 10.1016/j.crfs.2022.10.004.

KUMAR, M. S. Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Frontiers in Nutrition, v. 6, e11, 2019. doi: 10.3389/fnut.2019.00011.

LI, Y.; ZHANG, M.; ZHANG, J.; ZHAO, H.; TANG, M.; JIA, F.; WANG, Q.; WANG, Q.; CAO, X.; CHEN, J.; RUAN, H.; LI, H. Effects of Agaricus blazei Murrill polysaccharides on hyperlipidemic rats by regulation of intestinal microflora. Food Science & Nutrition, v. 8, n. 6, p. 2758-2772, 2020. doi: 10.1002/fsn3.1568.

LIANG, W.; MENKE, A. L.; DRIESSEN, A.; KOEK, G. H.; LINDEMAN, J. H.; STOOP, R.; HAVEKES, L. M.; KLEEMANN, R.; VAN DEN HOEK, A. M. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLOS ONE, v. 9, n. 12, e115922, 2014. doi: 10.1371/journal.pone.0115922.

MILIĆ, S.; LULIĆ, D.; ŠTIMAC, D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World Journal of Gastroenterology, v. 20, n. 28, p. 9330-9337, 2014. doi: 10.3748/wjg.v20.i28.9330.

NAIR, A. B.; JACOB, S. A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, v. 7, n. 2, p. 27-31, 2016. doi: 10.4103/0976-0105.177703.

NIWA, A.; TAJIRI, T.; HIGASHINO, H. Ipomoea batatas and Agaricus blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. Journal of Clinical Biochemistry and Nutrition, v. 48, n. 3, p. 194-202, 2011. doi: 10.3164/jcbn.10-78.

OH, T.W.; KIM, Y.A.; JANG, W.J.; BYEON, J.I.; RYU, C.H.; KIM, J.O; & HA, Y.L. Semipurified Fractions from the Submerged-Culture Broth of Agaricus blazei Murill Reduce Blood Glucose Levels in Streptozotocin-Induced Diabetic Rats. Journal of Agricultural and Food Chemistry v. 58, p. 4113-4119. 2010. doi: 10.1021/jf9036672

OHNO, NAOHITO; FURUKAWA, MAI; MIURA, NORIKO N.; ADACHI, YOSHIYUKI; MOTOI, MASURO; YADOMAE, TOSHIRO. Antitumor β-Glucan from the Cultured Fruit Body of Agaricus blazei. Biol Pharm Bull, v. 24, n. 7, p. 820-828, 2001. doi: 10.1248/bpb.24.820

REEVES, P. G.; NIELSEN, F. H.; FAHEY, G. C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. The Journal of Nutrition, v. 123, n. 11, p. 1939-1951, 1993. doi: 10.1093/jn/123.11.1939.

REEVES, P. G.; ROSSOW, K. L.; LINDLAUF, J. Development and testing of the AIN-93 purified diets for rodents: results on growth, kidney calcification and bone mineralization in rats and mice. The Journal of Nutrition, v. 123, n. 11, p. 1923-1931, 1993. doi: 10.1093/jn/123.11.1923.

RHEE, E. Nonalcoholic Fatty Liver Disease and Diabetes: An Epidemiological Perspective. Endocrinology and metabolismo, v. 34, n. 3, p. 226–233, 2019. doi: 10.3803/EnM.2019.34.3.226.

SALERNO, A. G.; SILVA, T. R.; AMARAL, M. E.; ALBERICI, L. C.; BONFLEUR, M. L.; PATRÍCIO, P. R.; FRANCESCONI, E. P.; GRASSI-KASSISSE, D. M.; VERCESI, A. E.; BOSCHERO, A. C.; OLIVEIRA, H. C. Overexpression of apolipoprotein CIII increases and CETP reverses diet-induced obesity in transgenic mice. International Journal of Obesity, v. 31, n. 10, p. 1586–1595, 2007. doi: 10.1038/sj.ijo.0803648.

SANGRO, P.; DE LA TORRE ALÁEZ, M.; SANGRO, B.; D’AVOLA, D. Metabolic dysfunction-associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. Journal of Physiology and Biochemistry, v. 80, e116, 2024. doi: 10.1007/s13105-023-00954-4.

SEMOVA, I.; BIDDINGER, S. B. Triglycerides in NAFLD: guilty until proven innocent. Trends in Pharmacological Sciences, v. 42, n. 3, p. 183–190, 2021. doi: 10.1016/j.tips.2020.12.001.

SHANG, A.; GAN, R.-Y.; XU, X.-Y.; MAO, Q.-Q.; ZHANG, P.-Z.; LI, H.-B. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Critical Reviews in Food Science and Nutrition, v. 61, n. 1, p. 1-17, 2020. doi: 10.1080/10408398.2020.1769548.

TSUBONE, H.; MAKIMURA, Y.; HANAFUSA, M.; YAMAMOTO, Y.; TSURU, Y.; MOTOI, M.; AMANO, S. Agaricus brasiliensis KA21 improves circulatory functions in spontaneously hypertensive rats. Journal of Medicinal Food, v. 17, n. 3, p. 295-301, 2014. doi: 10.1089/jmf.2013.2934.

VINCENT, M.; BANDELIER, S.; RIOND, C.; PONCET, C.; BLOT, A.-M.; POUTON, F. P.; BÈGUE, Y.-J. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats. Obesity, v. 21, n. 3, p. 553-561, 2013. doi: 10.1002/oby.2012.139.

WANG, P.; LI, X.-T.; SUN, L.; SHEN, L. Anti-Inflammatory Activity of Water-Soluble Polysaccharide of Agaricus blazei Murill on Ovariectomized Osteopenic Rats. Evidence-Based Complementary and Alternative Medicine, v. 2013, e164817, 2013. doi: 10.1155/2013/164817.

XU, Y.; XU, T.; HUANG, C.; AMAKYE, W. K.; LI, K.; ZHU, Y.; REN, J. The Age-Dependent Anticancer Efficacy of Agaricus blazei Murill Polysaccharide in Colon Cancer. Molecular Nutrition & Food Research, v. 69, n. 1, p. 1-8, 2025. doi: 10.1002/mnfr.202400702.

Publicado

2025-07-17

Cómo citar

SILVA, E. J. R. da; ALVES, J. P. G.; MAILLARD, H. de M.; KADOWAKI, M. K.; BONFLEUR, M. L. Agaricus blazei Murrill não reduz a obesidade e a esteatose hepática, mas melhora a tolerância à glicose e reduz o colesterol hepático em camundongos obesos. Nutrivisa Revista de Nutrição e Vigilância em Saúde, Fortaleza, v. 12, n. 1, p. e15731, 2025. DOI: 10.52521/nutrivisa.v12i1.15731. Disponível em: https://revistas.uece.br/index.php/nutrivisa/article/view/15731. Acesso em: 5 dic. 2025.

Número

Sección

Artigos originais