Influência do padrão alimentar ocidental e da obesidade na modulação da microbiota intestinal: uma revisão integrativa

Autores/as

DOI:

https://doi.org/10.52521/nutrivisa.v12i1.15826

Palabras clave:

dieta ocidental; obesidade; microbiota intestinal.

Resumen

O ambiente obesogênico, marcado pelo padrão alimentar ocidental e, consequentemente, pelo excedente calórico provenientes de alimentos com baixa qualidade nutricional, está associado ao acúmulo de gordura e ao desenvolvimento da obesidade, repercutindo na oferta de nutrientes essenciais para a microbiota intestinal, resultando em alterações na composição microbiana e na exacerbação do processo inflamatório. O presente estudo teve como objetivo revisar a influência da dieta ocidental e da obesidade na modulação da microbiota intestinal em humanos. Foi realizada uma revisão integrativa da literatura, contemplando artigos publicados entre 2019 e 2023 nas bases National Center for Biotechnology Information (PubMed), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) e Scientific Electronic Library Online (SciELO). O recorte temporal buscou reunir evidências atualizadas e alinhadas aos avanços recentes da área. A busca utilizou descritores indexados no Descritores em Ciências da Saúde (DeCS) e no Medical Subject Headings (MeSH), abrangendo termos relacionados à exposição (dieta ocidental; padrão alimentar ocidental; obesidade; obesidade visceral; excesso de peso; adiposidade; gordura saturada) e ao desfecho (microbiota intestinal; disbiose; microbiota humana; microbioma; modulação intestinal; barreira intestinal). Foram incluídos nove estudos em humanos, publicados integralmente em português, inglês ou espanhol. Os principais resultados mostraram um aumento nos gêneros Escherichia coli, Bilophila, Blautia (após dieta ocidental) e de BlautiaDorea (nos indivíduos obesos). Concluiu-se que a dieta ocidental pode promover o aumento nas concentrações de bactérias e de metabólitos prejudiciais à integridade intestinal e que os indivíduos obesos tendem a apresentar uma menor diversidade microbiana. Diante disso, estratégias capazes de modular positivamente a microbiota intestinal podem atuar como coadjuvantes relevantes no tratamento dessa doença.

Citas

ABDULQADIR, R.; ENGERS, J.; AL-SADI, R. Role of Bifidobacterium in modulating the intestinal epithelial tight junction barrier: Current knowledge and perspectives. Current Developments in Nutrition, v. 07, n. 12, p. 102026, 2023. Doi: 10.1016/j.cdnut.2023.102026.

ABU‐GHAZALEH, N.; CHUA, W. J.; GOPALAN, V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. Journal of Gastroenterology and Hepatology, v. 36, n. 1, p. 75-88, 2021. Doi: 10.1111/jgh.15042.

ACCIARINO, A.; DIWAKARLA, S.; HANDRECK, J.; BERGOLA, C.; SAHAKIAN, L.; MCQUADE, R. M. The role of the gastrointestinal barrier in obesity‐associated systemic inflammation. Obesity Reviews, v. 25, n. 3, p. e13673, 2024. Doi: 10.1111/obr.13673.

AGUS, A.; DENIZOT, J.; THÉVENOT, J.; MARTINEZ-MEDINA, M.; MASSIER, S.; SAUVANET, P.; BERNALIER-DONADILLE, A.; DENIS, S.; HOFMAN, P.; BONNET, R.; BILLARD, E.; BARNICH, N. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Scientific Reports, v. 6, n. 1, p. 19032, 2016. Doi: 10.1038/srep19032.

ALMEHMADI, K.; FOURMAN, S.; BUESING, D.; & ULRICH-LAI, Y. M. Western diet-induced obesity interferes with the HPA axis-blunting effects of palatable food in male rats. Physiology & Behavior, v. 270, p. 114285, 2023. Doi: 10.1016/j.physbeh.2023.114285.

ALVAREZ, L. O; ACOSTA, F. M.; XU, H.; SANCHEZ-DELGADO, G.; VILCHEZ-VARGAS, R.; LINK, A.; PLAZA-DIAZ, J.; LLAMAS, J. M.; GIL, A.; LABAYEN, I.; RENSEN, P. C. N.; RUIZ, J. R.; MARTINEZ-TELLEZ, B. Fecal microbiota composition is related to brown adipose tissue 18F-fluorodeoxyglucose uptake in young adults. Journal of Endocrinological Investigation, v. 46, n. 3, p. 567-576, 2023. Doi: 10.1007/s40618-022-01936-x.

AMABEBE, E.; ROBERT, F. O.; AGBALALAH, T.; ORUBU, E. S. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, v. 123, n. 10, p. 1127-1137, 2020. Doi: 10.1017/S0007114520000380

ANDOY-GALVAN, J. A.; SRIRAM, S.; KIAT, T. J.; XIN, L. Z.; SHIN, W. J.; CHINNA, K. Obesogenic Environment in the medical field: First year findings from a five-year cohort study. F1000Research, v. 12, 2023. Doi: 10.12688/f1000research.125203.1.

BARBER, C.; MEGO, M.; SABATER, C.; VALLEJO, F.; BENDEZU, R. A.; MASIHY, M.; GUARNER, F.; ESPÍN, J. C.; MARGOLLES, A.; AZPIROZ, F. Differential effects of western and mediterranean-type diets on gut microbiota: A metagenomics and metabolomics approach. Nutrients, v. 13, n. 8, p. 2638, 2021. Doi: 10.3390/nu13082638.

BASTINGS, J. J. A. J.; VENEMA, K.; BLAAK, E. E.; ADAM, T. C. Influence of the gut microbiota on satiety signaling. Trends in Endocrinology & Metabolism, v. 34, n. 4, p. 243-255, 2023. Doi: 10.1016/j.tem.2023.02.003.

BEAM, A.; CLINGER, E.; HAO, L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients, v. 13, n. 8, p. 2795, 2021. Doi: 10.3390/nu13082795.

BOR, B.; BEDREE, J. K.; SHI, W.; MCLEAN, J. S.; HE, X. Saccharibacteria (TM7) in the human oral microbiome. Journal of Dental Research, v. 98, n. 5, p. 500-509, 2019. Doi: 10.1177/0022034519831671.

BROWNING, K. N.; VERHEIJDEN, S.; BOECKXSTAENS, G. E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology, v. 152, n. 4, p. 730-744, 2017. Doi: 10.1053/j.gastro.2016.10.046.

BUSEBEE, B.; GHUSN, W.; CIFUENTES, L.; ACOSTA, A. Obesity: a review of pathophysiology and classification. In: Mayo Clinic Proceedings. Elsevier, v. 98, n. 12, p. 1842-1857, 2023. Doi: 10.1016/j.mayocp.2023.05.026.

CHANDA, W.; JIANG, H.; LIU, S. J. The ambiguous correlation of Blautia with obesity: A systematic review. Microorganisms, v. 12, n. 9, p. 1768, 2024. Doi: 10.3390/microorganisms12091768.

CLEMENTE-SUÁREZ, V. J.; BELTRÁN-VELASCO, A. I.; REDONDO-FLÓREZ, L.; MARTÍN-RODRÍGUEZ, A.; TORNERO-AGUILERA, J. F. Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients, v. 15, n. 12, p. 2749, 2023. Doi: 10.3390/nu15122749.

CORBIN, K. D.; CARNERO, E. A.; DIRKS, B.; IGUDESMAN, D.; YI, F.; MARCUS; A.; DAVIS, L. T.; PRATLET, R. E.; RITTMANN, B. E.; KRAJMALNIK-BROWN, R.; SMITH, S. R. Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nature Communications, v. 14, n. 1, p. 3161, 2023. Doi: 10.1038/s41467-023-38778-x.

COSTABILE, G.; VETRANI, C.; BOZZETTO, L.; GIACCO, R.; BRESCIANI, L.; RIO, D. D.; VITALE, M.; PEPA, G. D.; BRIGHENTI, F.; RICCARDI, G.; RIVELLESE, A. A.; ANNUZZI, G. Plasma TMAO increase after healthy diets: results from 2 randomized controlled trials with dietary fish, polyphenols, and whole-grain cereals. The American Journal of Clinical Nutrition, v. 114, n. 4, p. 1342-1350, 2021. Doi: 10.1093/ajcn/nqab188.

DEHGHAN, P.; FARHANGI, M. A.; NIKNIAZ, L.; NIKNIAZ, Z.; ASGHARI‐JAFARABADI, M. Gut microbiota‐derived metabolite trimethylamine N‐oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose‐response meta‐analysis. Obesity Reviews, v. 21, n. 5, p. e12993, 2020. Doi: 10.1111/obr.12993.

EJTAHED, H. S.; ANGOORANI, P.; SOROUSH, A. R.; HASANI-RANJBAR, S.; SIADAT, S. D.; LARIJANI, B. Gut microbiota-derived metabolites in obesity: a systematic review. Bioscience of Microbiota, Food and Health, v. 39, n. 3, p. 65-76, 2020. Doi: 10.12938/bmfh.2019-026.

ELIN, O.; BLUM, Y.; KASELA, S.; MEHRABIAN, M.; KUUSISTO, J.; KANGAS, A. J.; SOININEN, P.; WNAG, Z.; KORPELA, M. A.; HAZEN, S. L.; LAAKSO, M.; LUSIS, A. J. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, v. 18, p. 1-14, 2017. Doi: 10.1186/s13059-017-1194-2.

EVANS, M.; DAI, L.; AVESANI, C. M.; KUBLICKIENE, K.; STENVINKEL, P. The dietary source of trimethylamine N-oxide and clinical outcomes: an unexpected liaison. Clinical Kidney Journal, v. 16, n. 11, p. 1804-1812, 2023. Doi: 10.1093/ckj/sfad095.

FAN, S.; CHEN, S.; LIN, L. Research progress of gut microbiota and obesity caused by high-fat diet. Frontiers in Cellular and Infection Microbiology, v. 13, p. 1139800, 2023. Doi: 10.3389/fcimb.2023.1139800.

FAQERAH, NOJOUD; WALKER, DANIEL; GERASIMIDIS, KONSTANTINOS. The complex interplay between diet and Escherichia coli in inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, v. 58, n. 10, p. 984-1004, 2023. Doi: 10.1111/apt.17720.

FEIJÓO, LAURA; REY-BRANDARIZ, JULIA; GUERRA-TORTA, CARLA; CANDAL-PEDREIRA, CRISTINA; SANTIAGO-PÉREZ, MARÍA ISOLINA; RUANO-RAVINA, ALBERTO; PÉREZ-RÍOS, MÓNICA. Prevalence of obesity in Spain and its autonomous communities, 1987–2020. Revista Española de Cardiología, [S.l.], v. 76, n. 3, p. 174–181, mar. 2023. DOI: 77:819-2010.1016/j.rec.2024.03.015.

FRANCIS, H. M.; STEVENSON, R. J.; TAN, L. S.; EHRENFELD, L.; BYEON, S.; ATTUQUAYEFIO, T., GUPTA, D.; LIM, C. K. Kynurenic acid as a biochemical factor underlying the association between Western-style diet and depression: A cross-sectional study. Frontiers in Nutrition, v. 9, p. 945538, 2022. Doi: 10.3389/fnut.2022.945538.

FUSCO, W.; LORENZO, M. B.; CINTONI, M.; PORCARI, S.; RINNINELLA, E.; KAITSAS, F.; LENER, E.; MELE, M. C.; GASBARRINI, A.; COLLADO, M. C.; CAMMAROTA, G.; IANIRO, G. Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota. Nutrients, v. 15, n. 9, p. 2211, 2023. Doi: 10.3390/nu15092211.

GALÊS, A.; HAMMAD, M.; PIÑA, I.L.; KULINSKI, J. Obesity and cardiovascular health. European Journal of Preventive Cardiology, v. 31, n. 8, p. 1026–1035, 2024. Doi: 10.1093/eurjpc/zwae025 .

GILL, P. A., INNISS, S., KUMAGAI, T., RAHMAN, F. Z., & SMITH, A. The role of diet and gut microbiota in regulating gastrointestinal and inflammatory disease. Frontiers in Immunology, v.13, 2022. Doi: 10.3389/fimmu.2022.866059.

GOMES, A. C.; HOFFMANN, C.; MOTA, J. F. Gut microbiota is associated with adiposity markers and probiotics may impact specific genera. European Journal of Nutrition, v. 59, p. 1751-1762, 2020. Doi: 10.1007/s00394-019-02034-0.

GONG, H.; GAO, H.; REN, Q.; HE, J. The abundance of bifidobacterium in relation to visceral obesity and serum uric acid. Scientific Reports, v. 12, n. 1, p. 13073, 2022. Doi: 10.1038/s41598-022-17417-3.

GONG, J.; SHEN, Y.; ZHANG, H.; CAO, M.; GUO, M.; HE, J.; ZHANG, B.; XIAO, C. Gut microbiota characteristics of people with obesity by meta-analysis of existing datasets. Nutrients, v. 14, n. 14, p. 2993, 2022. Doi: 10.3390/nu14142993.

HACHEMI, I.; MUEEZ, U. D. Brown adipose tissue: activation and metabolism in humans. Endocrinology and Metabolism, v. 38, n. 2, p. 214-222, 2023. Doi: 10.3803/EnM.2023.1659.

HARDIN, B. I.; KEYES, D. Enterohormonal and microbiota pathophysiology of obesity. 2022. Acesso em: 02.10.2024. Disponível em <https://www.ncbi.nlm.nih.gov/books/NBK578204/>

HOU, K.; WU, Z. X.; CHEN, X. Y.; WANG, J. Q.; ZHANG, D.; XIAO, C.; ZHU, D.; KOYA, J. B.; WEI, L.; LI, J.; CHEN, Z. S. Microbiota in health and diseases. Signal Transduction and Targeted Therapy, v. 7, n. 1, p. 1-28, 2022. Doi: 10.1038/s41392-022-00974-4.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Pesquisa Nacional de Saúde: 2019: atenção primária à saúde e informações antropométricas. Rio de Janeiro: IBGE, 2020. 66 p. ISBN 978-65-87201-25-2. Disponivel em: < https://www.pns.icict.fiocruz.br/volumes-ibge/ >

JIAN, C.; LUUKKONEN, P.; SÄDEVIRTA, S.; YKI-JÄRVINEN, H.; SALONEN, A. Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults. Clinical Nutrition, v. 40, n. 1, p. 207-216, 2021. Doi: 10.1016/j.clnu.2020.05.008.

JU, T.; BOURRIE, B.C.T.; FORGIE, A.J.; PEPIN, D.M.; TOLLENAAR, S.; SERGI, C.M.; WILLING, B.P. The gut commensal Escherichia coli aggravates high-fat-diet-induced obesity and insulin resistance in mice. Applied and Environmental Microbiology, v. 89, n. 3, p. e01628-22, 2023. Doi: 10.1128/aem.01628-22.

KANG, G. G.; TREVASKIS, N. L.; MURPHY, A. J.; FEBBRAIO, M. A. Diet-induced gut dysbiosis and inflammation: key drivers of obesity driven NASH. Science, v. 26 p. 105905, 2022. Doi: 10.1016/j.isci.2022.105905.

LI, X.; XUE, Q.; MA, H.; CHAMPAGNE, C. M.; BRAY, G. A.; SACKS, F. M.; QI, L. Genetically determined gut microbial abundance and 2-year changes in central adiposity and body composition: The POUNDS lost trial. Clinical Nutrition, v. 41, n. 12, p. 2817-2824, 2022. Doi: 10.1016/j.clnu.2022.11.002.

LI, X.; ZHANG, B.; HU, Y.; ZHAO, Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Frontiers in Pharmacology, v. 12, p. 769501, 2021. Doi: 10.3389/fphar.2021.769501.

LIU, X.; MAO, B.; GU, J.; WU, J.; CUI, S.; WANG, G.; ZHAO. J.; ZHANG. H.; CHEN, W. Blautia - a new functional genus with potential probiotic properties? Gut Microbes, v. 13, n. 1, p. 1875796, 2021. Doi: 10.1080/19490976.2021.1875796.

LOU, X.; LI, P.; LUO, X.; LEI, Z.; LIU, X.; LIU, Y.; GAO, L.; XU. W.; LIU, X. Dietary patterns interfere with gut microbiota to combat obesity. Frontiers in Nutrition, v. 11, p. 1387394, 2024. Doi: 10.3389/fnut.2024.1387394.

MAGNE, F.; GOTTELAND, M.; GAUTHIER, L.; ZAZUETA, A.; PESOA, S.; NAVARRETE, P.; BALAMURUGAN, R. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients, v. 12, n. 5, p. 1474, 2020. Doi: 10.3390/nu12051474.

MALESZA, I. J.; MALESZA, M.; WALKOWIAK, J.; MUSSIN, N.; WALKOWIAK, D.; ARINGAZINA, R.; Bartkowiak-Wieczorek. J.; MĄDRY, E. High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells, v. 10, n. 11, p. 3164, 2021. Doi: 10.3390/cells10113164.

MORIGNY, P., HOUSSIER, M., MOUISEL, E., & LANGIN, D. Adipocyte lipolysis and insulin resistance. Biochimie, v. 125, p. 259-266, 2016. Doi: 10.1016/j.biochi.2015.10.024.

NATIVIDAD, J.M.; LAMAS, B.; PHAM, H.P.; MICHEL, M.L.; RAINTEAU, D.; BRIDONNEAU, C.; COSTA, G.D.; VLIEG, J.V.H; SOVRAN, B.; CHAMIGNON, C.; PLANCHAIS, J.; RICHARD, M.L.; LANGELLA, P.; VEIGA, P.; SOKOL, H. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Communications, v. 9, n. 1, p. 2802, 2018. Doi: 10.1038/s41467-018-05249-7.

NOGACKA, A. M.; DE LOS REYES‐GAVILÁN, C. G.; MARTÍNEZ‐FAEDO, C.; RUAS‐MADIEDO, P.; SUAREZ, A.; MANCABELLI, L.; VENTURA, M.; CIFUENTES, A.; LEÓN, C.; GUEIMONDE, M.; SALAZAR, N. Impact of Extreme Obesity and Diet‐Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Molecular Nutrition & Food Research, v. 65, n. 5, p. 2000030, 2021. Doi: 10.1002/mnfr.202000030.

ORGANIZAÇÃO MUNDIAL DA SAÚDE - OMS. Obesidade e sobrepeso. Acesso em: 11.09.2024. Disponível em <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>

PALMAS, V.; PISANU, S.; MADAU, V.; CASULA, E.; DELEDDA, A.; CUSANO, R.; UVA, P.; VASCELLARI, S.; LOVISELLI, A.; MANZIN, A.; VELLUZZI, F. Gut microbiota markers associated with obesity and overweight in Italian adults. Scientific Reports, v. 11, n. 1, p. 5532, 2021. Doi: 0.1038/s41598-021-84928-w.

PAPANDREOU, C.; MORÉ, M.; BELLAMINE, A. Trimethylamine N-oxide in relation to cardiometabolic health-cause or effect? Nutrients, v. 12, n. 5, p. 1330, 2020. Doi: 10.3390/nu12051330.

PINART, M.; DÖTSCH, A.; SCHLICHT, K.; LAUDES, M.; BOUWMAN, J.; FORSLUND, S. K.; PISCHON T.; NIMPTSCH, K. Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients, v. 14, n. 1, p. 12, 2021. Doi: 10.3390/nu14010012.

PORTINCASA, P.; BONFRATE, L.; VACCA, M.; DE ANGELIS, M.; FARELLA, I.; LANZA, E.; KHALIL, M.; WANG, D. Q. H.; SPERANDIO, M.; DI CIAULA, A. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International journal of molecular sciences, v. 23, n. 3, p. 1105, 2022. Doi: 10.3390/ijms23031105.

RINNINELLA, E.; TOHUMCU, E.; RAOUL, P.; FIORANI, M.; CINTONI, M.; MELE, M. C.; CAMMAROTA, G.; GASBARRINI, A.; IANIRO, G. The role of diet in shaping human gut microbiota. Best Practice & Research Clinical Gastroenterology, v. 62, p. 101828, 2023. Doi: 10.1016/j.bpg.2023.101828.

SANKARARAMAN, S.; NORIEGA, K.; VELAYUTHAN, S.; SFERRA, T.; MARTINDALE, R. Gut microbiome and its impact on obesity and obesity-related disorders. Current Gastroenterology Reports, v. 25, n. 2, p. 31-44, 2023. Doi: 10.1007/s11894-022-00859-0.

SARMIENTO-ANDRADE, Y.; SUÁREZ, R.; QUINTERO, B.; GARROCHAMBA, K.; CHAPELA, S. P. Gut microbiota and obesity: new insights. Frontiers in Nutrition, v. 9, p. 1018212, 2022. Doi: 10.3389/fnut.2022.1018212.

SEVERINO, A.; TOHUMCU, E.; TAMAI, L.; DARGENIO, P.; PORCARI, S.; RONDINELLA, D.; VENTURINI, I.; MAIDA. M.; GASBARRINI. A.; CAMMAROTA. G.; IANIRO, G. The microbiome-driven impact of Western diet in the development of noncommunicable chronic disorders. Best Practice & Research Clinical Gastroenterology, p. 101923, 2024. Doi: https://doi.org/10.1016/j.bpg.2024.101923.

SHI, Z. Gut microbiota: an important link between western diet and chronic diseases. Nutrients, v. 11, n. 10, p. 2287, 2019. Doi: 10.3390/nu11102287.

SHIN, J. H.; JUNG, S.; KIM, S. A.; KANG, M. S.; KIM, M. S.; JOUNG, H.; HWANG, G. S.; SHIN, D. M. Differential effects of typical Korean versus American-style diets on gut microbial composition and metabolic profile in healthy overweight Koreans: a randomized crossover trial. Nutrients, v. 11, n. 10, p. 2450, 2019. Doi: 10.3390/nu11102450.

SINGH, R. K.; CHANG, H. W.; YAN, D. I.; LEE, K. M.; UCMAK, D.; WONG, K.; ABROUK, M.; FARAHNIK, M.; NAKAMURA, M.; ZHU, T. H.; BHUTANI, T.; LIAO, W. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, v. 15, p. 1-17, 2017. Doi: 10.1186/s12967-017-1175-y.

SINGH, R.; ZOGG, H.; WEI, L.; BARTLETT, A.; GHOSHAL, U. C.; RAJENDER, S.; RO, S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. Journal of Neurogastroenterology and Motility, v. 27, n. 1, p. 19, 2021. Doi: 10.5056/jnm20149.

SOUZA, M. T. D.; SILVA, M. D. D.; CARVALHO, R. D. Revisão integrativa: o que é e como fazer. Einstein (São Paulo), v. 8, p. 102-106, 2010. Doi: https://doi.org/10.1590/S1679-45082010RW1134.

SURIANO, F.; NYSTRÖM, E. E.; SERGI, D.; GUSTAFSSON, J. K. Diet, microbiota, and the mucus layer: The guardians of our health. Frontiers in Immunology, v. 13, p. 953196, 2022. Doi: 10.3389/fimmu.2022.953196.

TAKEUCHI, T.; KAMEYAMA, K.; MIYAUCHI, E.; NAKANISHI, Y.; KANAYA, T.; FUJII, T.; KATO, T.; SASAKI, T.; TACHIBANA, N.; NEGISHI, H.; MATSUI, M.; OHNO, H. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, v. 35, n. 2, p. 361-375. e9, 2023. Doi: 10.1016/j.cmet.2022.12.013.

TANG, Y.; PURKAYASTHA, S.; CAI, D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends in Neurosciences, v. 38, n. 1, p. 36-44, 2015. Doi: 10.1016/j.tins.2014.10.002.

VACCA, M.; CELANO, G.; CALABRESE, F. M.; PORTINCASA, P.; GOBBETTI, M.; DE ANGELIS, M. The controversial role of human gut lachnospiraceae. Microorganisms, v. 8, n. 4, p. 573, 2020. Doi: 10.3390/microorganisms8040573.

VAN HUL, M.; CANI, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe? Nature Reviews Endocrinology, v. 19, n. 5, p. 258-271, 2023. Doi: 10.1038/s41574-022-00794-0.

WANG, Z.; BERGERON, N.; LEVISON, B. S.; LI, X. S.; CHIU, S.; JIA, X.; KOETH, R. A.; LI, L.; WU, Y.; TANG, W. H. W.; KRAUSS; R. M.; HAZEN, S. L. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. European Heart Journal, v. 40, n. 7, p. 583-594, 2019. Doi: 10.1093/eurheartj/ehy799.

WIEST, R.; LAWSON, M.; GEUKING, M. Pathological bacterial translocation in liver cirrhosis. Journal of Hepatology, v. 60, n. 1, p. 197-209, 2014. Doi: 10.1016/j.jhep.2013.07.044.

WOLTERS, M.; AHRENS, J.; ROMANÍ-PÉREZ, M.; WATKINS, C.; SANZ, Y.; BENÍTEZ-PÁEZ, A.; STANTON. C.; GÜNTHER, K. Dietary fat, the gut microbiota, and metabolic health–A systematic review conducted within the MyNewGut project. Clinical Nutrition, v. 38, n. 6, p. 2504-2520, 2019. Doi: 10.1016/j.clnu.2018.12.024.

XIONG, R. G.; ZHOU, D. D.; WU, S. X.; HUANG, S. Y.; SAIMAITI, A.; YANG, Z. J., SHANG, A.; ZHAO, C. N.; GAN, R. Y.; LI, H. B. Health benefits and side effects of short-chain fatty acids. Foods, v. 11, n. 18, p. 2863, 2022. Doi: 10.3390/foods11182863.

XU, Z.; JIANG, W.; HUANG, W.; LIN, Y.; CHAN, F. K.; NG, S. C. Gut microbiota in patients with obesity and metabolic disorders - A systematic review. Genes & Nutrition, v. 17, n. 1, p. 2, 2022. Doi: 10.1186/s12263-021-00703-6.

YAN, J.; WANG, L.; GU, Y.; HOU, H.; LIU, T.; DING, Y.; CAO, H. Dietary patterns and gut microbiota changes in inflammatory bowel disease: current insights and future challenges. Nutrients, v. 14, n. 19, p. 4003, 2022. Doi: 10.3390/nu14194003.

YU, F.; DU, Y.; LI, C.; ZHANG, H.; LAI, W.; LI, S.; YE, Z.; FU, W.; LI, S.; LI, X.; LUO, D. Association between metabolites in tryptophan-kynurenine pathway and inflammatory bowel disease: A two-sample Mendelian randomization. Scientific Reports, v. 14, n. 1, p. 201, 2024. Doi: 10.1038/s41598-023-50990-9.

ZENG, Q.; LI, D.; HE, Y.; LI, Y.; YANG, Z.; ZHAO, X.; LIU, H.; WANG, Y.; SUN, J.; FENG, X.; WANG, F.; CHEN, J.; ZHENG, Y.; YANG, Y.; SUN, X.; XU, X.; WANG, D.; KENNEY, T.; JIANG, Y.; GU, H.; LI, Y.; ZHOU, K.; LI, S.; DAI, W. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Scientific Reports, v. 9, n. 1, p. 13424, 2019. Doi: 10.1038/s41598-019-49462-w.

ZHANG, Z.; TAYLOR, L.; SHOMMU, N.; GHOSH, S.; REIMER, R.; PANACCIONE, R.; KAUR, S.; HYUN, J. E.; CAI, C.; DEEHAN, E. C.; HOTTE, N.; MADSEN, K. L.; RAMAN, M. A diversified dietary pattern is associated with a balanced gut microbial composition of Faecalibacterium and Escherichia/Shigella in patients with Crohn’s disease in remission. Journal of Crohn's and Colitis, v. 14, n. 11, p. 1547-1557, 2020. Doi: 10.1093/ecco-jcc/jjaa084.

ZHANG, Y. J.; LI, S.; GAN, R. Y.; ZHOU, T.; XU, D. P.; LI, H. B. Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences, v. 16, n. 4, p. 7493-7519, 2015. Doi: 10.3390/ijms16047493.

ZHU, C.; SAWREY-KUBICEK, L.; BEALS, E.; RHODES, C. H.; HOUTS, H. E.; SACCHI, R.; ZIVKOVIC, A. M. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research, v. 77, p. 62-72, 2020. Doi: 10.1016/j.nutres.2020.03.005.

ZSÁLIG, D.; BERTA, A.; TÓTH, V.; SZABÓ, Z.; SIMON, K.; FIGLER, M.; PUSZTAFALVI, H.; POLYÁK, É. A review of the relationship between gut microbiome and obesity. Applied Sciences, v. 13, n. 1, p. 610, 2023. Doi: https://doi.org/10.3390/app13010610.

Publicado

2025-08-29

Cómo citar

BARROSO, A. L. P.; MATOS, M. R. T. Influência do padrão alimentar ocidental e da obesidade na modulação da microbiota intestinal: uma revisão integrativa. Nutrivisa Revista de Nutrição e Vigilância em Saúde, Fortaleza, v. 12, n. 1, p. e15826, 2025. DOI: 10.52521/nutrivisa.v12i1.15826. Disponível em: https://revistas.uece.br/index.php/nutrivisa/article/view/15826. Acesso em: 5 dic. 2025.

Número

Sección

Artigos de revisão