Efectos de la administración continua de etinilestradiol y drospirenona sobre la masa corporal y la glándula mamaria en ratonas alimentadas con dieta normolipídica e hiperlipídica
DOI:
https://doi.org/10.52521/nutrivisa.v12i1.15667Palabras clave:
glándula mamaria, obesidad, anticonceptivos orales.Resumen
Los anticonceptivos orales combinados (AOC) son utilizados por millones de mujeres, pero estudios sugieren que pueden aumentar el riesgo de cáncer de mama. El sobrepeso y la obesidad, también factores de riesgo para neoplasias mamarias, han alcanzado proporciones epidémicas. Este estudio evaluó los efectos de un AOC que contiene etinilestradiol (EE2) y drospirenona (DRSP) sobre los órganos reproductivos, especialmente las características histopatológicas de las glándulas mamarias inguinales en ratonas adultas sexualmente activas alimentadas con dieta estándar (SD) o hiperlipídica (HFD). Las hembras Swiss recibieron SD o HFD y fueron tratadas durante 65 días por gavage diario con agua destilada [control (CTL)-SD y CTL-HFD] o 0,6 µg de EE2 + 60 µg de DRSP (AOC-SD y AOC-HFD). El tratamiento con AOC alteró el ciclo estral, con frotis vaginales que mostraron una reducción de células escamosas y un aumento de leucocitos, células profundas y moco, características de metaestro y proestro. Al final del experimento, las hembras AOC-SD presentaron peso corporal (PC), masa de tejido adiposo blanco (TAB) inguinal y pesos uterino y ovárico similares a los del grupo CTL-SD. La dieta hiperlipídica aumentó el PC y el TAB, sin afectar los pesos del útero y ovarios. El AOC atenuó estos aumentos en el grupo HFD, pero incrementó el peso uterino en AOC-HFD. El análisis morfológico de las glándulas mamarias no mostró alteraciones patológicas ni estructurales en ácinos, conductos o luces. Las hembras AOC-HFD presentaron adipocitos blancos más pequeños que CTL-HFD, mientras que la cantidad de adipocitos beige se mantuvo sin cambios entre los grupos. Estos hallazgos sugieren que EE2 y DRSP pueden modular la obesidad inducida por dieta rica en grasas sin afectar negativamente la morfología de las glándulas mamarias.
Citas
AGUSTIN, S.A.; BAROKAH, L. Correlation between Obesity and Contraceptive Method on Estrogen and Progesterone Receptors and Human Epidermal Growth Factor Receptor–2 Expression among Breast Cancer Patients in Dr. Moewardi Hospital, Surakarta. Indonesian Journal of Medicine, v.4, n.3, p.259–265, 2019. doi: 10.26911/theijmed.2019.4.3.204
ALIMKHODJAEVA, L.T.; NISHANOV, D.A.; BOZAROVA, L.M.; NORBEKOVA, M.K.H. Immunohistochemical Aspects of the Expression of Markers of Cell Cycle Regulation, Proliferation and Apoptosis (p53, Ki-67, bcl-2, cyclin D1) in Breast Neoplasia. Research In Cancer and Tumor, v.11, n.1, p.1–5, 2023. doi:10.5923/j.rct.20231101.01
AL-QAHTANI, S.M.; BRYZGALOVA, G.; VALLADOLID-ACEBES, I.; KORACH-ANDRÉ, M.; DAHLMAN-WRIGHT, K.; EFENDIĆ, S.; BERGGREN, P.O.; PORTWOOD, N. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression. Hormone Molecular Biology and Clinical Investigation, v.29, n.1, p.13–26, 2017. doi: 10.1515/hmbci-2016-0031
ARENDT, L.M.; KUPERWASSER, C. Form and Function: how Estrogen and Progesterone Regulate the Mammary Epithelial Hierarchy. Journal of Mammary Gland Biology and Neoplasia, v.20, n.1–2, p.9–25, 2015. doi: 10.1007/s10911-015-9337-0
ARMANI, A.; CINTI, F; MARZOLLA, V.; MORGAN, J.; CRANSTON, G.A.; ANTELMI, A.; CARPINELLI, G.; CANESE, R.; PAGOTTO, U.; QUARTA, C.; MALORNI, W.; MATARRESE, P.; MARCONI, M.; FABBRI, A.; ROSANO, G.; CINTI, S.; YOUNG, M.J.; CAPRIO, M. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high‐fat‐diet‐fed mice. The FASEB Journal, v.28, n.8, p.3745–3757, 2014. doi: 10.1096/fj.13-245415
BARAŃSKA, A. Oral Contraceptive Use and Assessment of Breast Cancer Risk among Premenopausal Women via Molecular Characteristics: Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, v.19, n.22, p.15363, 2022. doi: 10.3390/ijerph192215363
BATES, P.; FISHER, R.; WARD, A.; RICHARDSON, L.; HILL, D.; GRAHAM, C. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). British Journal of Cancer, v.72, n.5, p.1189–1193, 1995. doi: 10002E1038/bjc.1995.484
BOUTINAUD, M.; SHAND, J.; PARK, M.; PHILLIPS, K.; BEATTIE, J.; FLINT, D.; ALLAN, G. A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. Journal of Molecular Endocrinology, v.33, n.1, p.195–207, 2004. doi: 10.1038/bjc.1995.484
CAO, J.; LI, J.; ZHANG, Z.; QIN, G.; PANG, Y.; WU, M.; GU, K.; XU, H. Interaction between body mass index and family history of cancer on the risk of female breast cancer. Scientific Reports, v.14, n.1, p.4927, 2024. doi: 10.1038/s41598-024-54762-x
CASIMIRO, M.C.; WANG, C.; LI, Z.; SANTE, G. DI; WILLMART, N.E.; ADDYA, S.; CHEN, L.; LIU, Y.; LISANTI, M.P.; PESTELL, R.G. Cyclin D1 Determines Estrogen Signaling in the Mammary Gland In Vivo. Molecular Endocrinology, v.27, n.9, p.1415–1428, 2013. doi: 10.1210/me.2013-1065
CLEUREN, A.C.A.; LINDEN, I.K. VAN DER; VISSER, Y.P. DE; WAGENAAR, G.T. M.; REITSMA, P.H.; VLIJMEN, B.J.M. VAN. 17α‐Ethinylestradiol rapidly alters transcript levels of murine coagulation genes via estrogen receptor α. Journal of Thrombosis and Haemostasis, v.8, n.8, p.1838–1846, 2010. doi: 10.1111/j.1538-7836.2010.03930.x
CONWAY, J.R.W.; DINÇ, D.D.; FOLLAIN, G.; PAAVOLAINEN, O.; KAIVOLA, J.; BOSTRÖM, P.; HARTIALA, P.; PEUHU, E.; IVASKA, J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. Science Advances, v.9, n.28, 2023. doi: 10.1126/sciadv.adg1840
DEROSSI, D.R.; ITO, K.; COUTO FILHO, J.D.; BACCHI, C.E. Avaliação da expressão da proteína bcl-2 no carcinoma de mama: estudo em punção aspirativa por agulha fina; correlação com grau histológico em espécimes cirúrgicos correspondentes. Jornal Brasileiro de Patologia e Medicina Laboratorial, v39, n. 3, 2003. doi: 10.1590/S1676-24442003000300010
DIETZ OSTERGAARD, S.; BUTLER, K.; RITTER, J. M.; JOHNSON, R.; SANDERS, J.; POWELL, N.; LATHROP, G.; ZAKI, S. R.; MCNICHOLL, J.M.; KERSH, E.N. A combined oral contraceptive affects mucosal SHIV susceptibility factors in a pigtail macaque (Macaca nemestrina) model. Journal of Medical Primatology, v.44, n.2, p.97–107, 2015. doi: 10.1111/jmp.12157
DIXON, A.; ROWAN, E.G.; YACKLEY, A.N.; HINES, E.P. PFAS Modulate Osmotic Signaling Independent of Gravimetric Changes in the Rat Uterus. Toxics, v.12, n.3, p.170, 2024. doi: 10.3390/toxics12030170
FIGUEIREDO, L.S.; OLIVEIRA, K.M.; FREITAS, I.N.; SILVA, J.A.; SILVA, J.N.; FAVERO-SANTOS, B.C.; BONFLEUR, M.L.; CARNEIRO, E.M.; RIBEIRO, R.A. Bisphenol-A exposure worsens hepatic steatosis in ovariectomized mice fed on a high-fat diet: Role of endoplasmic reticulum stress and fibrogenic pathways. Life Sciences, v.256, p.118012, 2020. doi: 10.1016/j.lfs.2020.118012
FITZPATRICK, D.; PIRIE, K.; REEVES, G.; GREEN, J.; BERAL, V. Combined and progestagen-only hormonal contraceptives and breast cancer risk: A UK nested case–control study and meta-analysis. PLOS Medicine, v.20, n.3, p.e1004188, 2023. doi: 10.1371/journal.pmed.1004188
FREITAS, G.C.; CARREGARO, A.B. Aplicabilidade da extrapolação alométrica em protocolos terapêuticos para animais selvagens. Ciência Rural, v.43, n.2, p.297–304, 2013. doi: 10.1590/S0103-84782013000200017
FUHRMANN, U.; KRATTENMACHER, R.; SLATER, E.P.; FRITZEMEIER, K.H. The novel progestin drospirenone and its natural counterpart progesterone: Biochemical profile and antiandrogenic potential. Contraception, v.54, n.4, p.243–251, 1996. doi: 10.1016/s0010-7824(96)00195-3
FULLER, K.N.Z.; MCCOIN, C.S.; STIERWALT, H.; ALLEN, J.; GANDHI, S.; PERRY, C.G.R.; JAMBAL, P.; SHANKAR, K.; THYFAULT, J.P. Oral combined contraceptives induce liver mitochondrial reactive oxygen species and whole‐body metabolic adaptations in female mice. The Journal of Physiology, v.600, n.24, p.5215–5245, 2022. doi: 10.1113/JP283733
GAO, M.; MA, Y.; LIU, D. High-Fat Diet-Induced Adiposity, Adipose Inflammation, Hepatic Steatosis and Hyperinsulinemia in Outbred CD-1 Mice. PLOS ONE, v.10, n.3, p.e0119784, 2015. doi: 10.1371/journal.pone.0119784
GOUVEIA, T.V.C.; AGUIAR, G.S.; CHAVES, J.O.; NASCIMENTO, D.S.C.; OLIVEIRA, C.A.R.; RIBEIRO, R.A.; LATINI, J.T.P.; BLANC, H.N.H. Efeito do uso ininterrupto de contraceptivo oral combinado na vagina de camundongos. Em: Tecnologia e Inovação para o Cuidar em Enfermagem. Atena Editora, p.99–109. 2020. doi: 10.22533/at.ed.94820261010
GRAAFLAND, L.; ABBOTT, M.; ACCORDINO, M. Breast Cancer Risk Related to Combined Oral Contraceptive Use. The Journal for Nurse Practitioners, v.16, n.2, p.116–120, 2020. doi: 10.1016/j.nurpra.2019.11.018
HENRIQUES, H.N. Efeito do uso contínuo de hormônios esteroides sexuais na mama de ratas Wistar. [Tese de Doutorado]. Niterói: Universidade Federal Fluminense, 2013.
HILLERS-ZIEMER, L.E.; ARENDT, L.M. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. Journal of Mammary Gland Biology and Neoplasia, v.25, n.2, p.115–131, 2020. doi: 10.1007/s10911-020-09452-5
HIRSCHBERG, A.L.; TANI, E.; BRISMAR, K.; LUNDSTRÖM, E. Effects of drospirenone and norethisterone acetate combined with estradiol on mammographic density and proliferation of breast epithelial cells—A prospective randomized trial. Maturitas, v.126, p.18–24, 2019. doi: 10.1016/j.maturitas.2019.04.205
IYENGAR, N.M.; GUCALP, A.; DANNENBERG, A.J.; HUDIS, C.A. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. Journal of Clinical Oncology, v.34, n.35, p.4270–4276, 2016. doi: 10.1200/JCO.2016.67.4283
KIRAN, H.; TOK, A.; YÜKSEL, M.; ARIKAN, D.C.; EKERBICER, H.C. Estradiol plus drospirenone therapy increases mammographic breast density in perimenopausal women. European Journal of Obstetrics & Gynecology and Reproductive Biology, v.159, n.2, p.384–387, 2011. doi: 10.1016/j.ejogrb.2011.09.023
KOTSIFAKI, A.; MAROULAKI, S.; KARALEXIS, E.; STATHAKI, M.; ARMAKOLAS, A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. International Journal of Molecular Sciences, v.25, n.17, p.9302, 2024. doi: 10.3390/ijms25179302
KRATTENMACHER, R. Drospirenone: pharmacology and pharmacokinetics of a unique progestogen. Contraception, v.62, n.1, p.29–38, 2000. doi: 10.1016/s0010-7824(00)00133-5
KUBOTA, N.; TERAUCHI, Y.; MIKI, H.; TAMEMOTO, H.; YAMAUCHI, T.; KOMEDA, K.; SATOH, S.; NAKANO, R.; ISHII, C.; SUGIYAMA, T.; ETO, K.; TSUBAMOTO, Y.; OKUNO, A.; MURAKAMI, K.; SEKIHARA, H.; HASEGAWA, G.; NAITO, M.; TOYOSHIMA, Y.; TANAKA, S.; SHIOTA, K.; KITAMURA, T.; FUJITA, T.; EZAKI, O.; AIZAWA, S.; NAGAI, R.; TOBE1, K.; KIMURA, S.; KADOWAKI, T. PPARγ Mediates High-Fat Diet–Induced Adipocyte Hypertrophy and Insulin Resistance. Molecular Cell, v.4, n.4, p.597–609, 1999. doi: 10.1016/s1097-2765(00)80210-5
LAUBY-SECRETAN, B.; SCOCCIANTI, C.; LOOMIS, D.; GROSSE, Y.; BIANCHINI, F.; STRAIF, K. Body Fatness and Cancer — Viewpoint of the IARC Working Group. New England Journal of Medicine, v.375, n.8, p.794–798, 2016. doi: 10.1056/NEJMsr1606602
LEE, J.S.; TOCHENY, C.E.; SHAW, L.M. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. Life, v.12, n.12, p.1992, 2022. doi: 10.3390/life12121992
LIU, N.Q.; CAO, W.H.; WANG, X.; CHEN, J.; NIE, J. Cyclin genes as potential novel prognostic biomarkers and therapeutic targets in breast cancer. Oncology Letters, v.24, n.4, p.374, 2022.
MENEZES, C.A.; OLIVEIRA, V.S.; BARRETO, R.F. Estudo da correlação entre obesidade e câncer de mama no período pré e pós-menopausa / Study of the correlation between obesity and breast cancer in the pre and post-menopause period. Brazilian Journal of Health Review, v.4, n.1, p.1487–1501, 2021. doi: 10.3892/ol.2022.13494
MØRCH, L.S.; SKOVLUND, C.W.; HANNAFORD, P.C.; IVERSEN, L.; FIELDING, S.; LIDEGAARD, Ø. Contemporary Hormonal Contraception and the Risk of Breast Cancer. New England Journal of Medicine, v.377, n.23, p.2228–2239, 2017. doi: 10.1056/NEJMoa1700732
MUHN, P.; KRATTENMACHER, R.; BEIER, S.; ELGER, W.; SCHILLINGER, E. Drospirenone: A novel progestogen with antimineralocorticoid and antiandrogenic activity. Contraception, v.51, n.2, p.99–110, 1995. doi: 10.1016/0010-7824(94)00015-o
NERY, L.C.D.E.S.; BRAZ, L.C.S.; FERREIRA, L.L.D.M.; VIEIRA, F.P.; SILVA, L.L.; BLANC, H.N.H.; RAIMUNDO, J.M. A combined injectable contraceptive improves plasma redox status and does not induce vascular changes in female rats. Anais da Academia Brasileira de Ciências, v.93, n.3, 2021. doi: 10.1590/0001-3765202120201924
NGUYEN, H.L.; GEUKENS, T.; MAETENS, M.; APARICIO, S.; BASSEZ, A.; BORG, A.; BROCK, J.; BROEKS, A.; CALDAS, C.; CARDOSO, F.; SCHEPPER, M.; DELORENZI, M.; DRUKKER, C.A.; GLAS, A.M.; GREEN, A.R.; ISNALDI, E.; EYFJÖRÐ, J.; KHOUT, H.; KNAPPSKOG, S.; KRISHNAMURTHY, S.; LAKHANI, S.R.; LANGEROD, A.; MARTENS, J.W.M.; MCCART REED, A.E.; MURPHY, L.; NAULAERTS, S.; NIK-ZAINAL, S.; NEVELSTEEN, I.; NEVEN, P.; PICCART, M.; PONCET, C.; PUNIE, K.; PURDIE, C.; RAKHA, E.A.; RICHARDSON, A.; RUTGERS, E.; VINCENT-SALOMON, A.; SIMPSON, P.T.; SCHMIDT, M.K.; SOTIRIOU, C.; SPAN, P.N.; TAN, K.T.B.; THOMPSON, A.; TOMMASI, S.; BAELEN, K.V.; VIJVER, M.V.; LAERE, S.V.; VAN’T VEER, L.; VIALE, G.; VIARI, A.; VOS, H.; WITTEVEEN, A.T.; WILDIERS, H.; FLORIS,G.; GARG, A.D.; SMEETS, A. LAMBRECHTS, D.; BIGANZOLI, E.; RICHARD, F.; DESMEDT, C. Obesity-associated changes in molecular biology of primary breast cancer. Nature Communications, v.14, n.1, p.4418, 2023. doi: 10.1038/s41467-023-39996-z
OLIVEIRA, C.A.R.; ARAUJO, T.R.; AGUIAR, G.S.; DA SILVA JUNIOR, J.A.; VETTORAZZI, J.F.; FREITAS, I.N.; OLIVEIRA, K.M.; BOSCHERO, A.C.; BONFLEUR, M.L.; CLARKE, J.R.; HENRIQUES, H.N.; RIBEIRO, R.A. Combined oral contraceptive in female mice causes hyperinsulinemia due to β-cell hypersecretion and reduction in insulin clearance. Journal of Steroid Biochemistry and Molecular Biology, v.190, p.54–63, 2019. doi: 10.1016/j.jsbmb.2019.03.018
OLIVEIRA, K.M.; FIGUEIREDO, L.S.; ARAUJO, T.R.; FREITAS, I.N.; SILVA, J.N.; BOSCHERO, A.C.; RIBEIRO, R.A. Prolonged bisphenol-A exposure decreases endocrine pancreatic proliferation in response to obesogenic diet in ovariectomized mice. Steroids, v.160, p.108658, 2020. doi: 10.1016/j.steroids.2020.108658
OTTO, C.; FUCHS, I.; ALTMANN, H.; KLEWER, M.; WALTER, A.; PRELLE, K.; VONK, R.; FRITZEMEIER, K.H. Comparative Analysis of the Uterine and Mammary Gland Effects of Drospirenone and Medroxyprogesterone Acetate. Endocrinology, v.149, n.8, p.3952–3959, 2008. doi: 10.1210/en.2007-1612
POMPEI, L.M.; CARVALHO, F.M.; ORTIZ, S.C.B.C.; MOTTA, M.C.; CRUZ, R.J.; MELO, N.R. Morphometric evaluation of effects of two sex steroids on mammary gland of female rats. Maturitas, v.51, n.4, p.370–379, 2005. doi: 10.1016/j.maturitas.2004.09.007
RAIMONDI, G.M.; ENG, A.K.; KENNY, M.P.; BRITTING, M.A.; OSTROFF, L.E. Track-by-Day: A standardized approach to estrous cycle monitoring in biobehavioral research. Behavioural Brain Research, v.461, p.114860, 2024. doi: 10.1016/j.bbr.2024.114860
ROSENBAUM, P.; SCHMIDT, W.; HELMERHORST, F.M.; WUTTKE, W.; ROSSMANITH, W.; FREUNDL, F.; THOMAS, K.; GRILLO, M.; WOLF, A.; HEITHECKER, R. Inhibition of ovulation by a novel progestogen (drospirenone) alone or in combination with ethinylestradiol. The European Journal of Contraception & Reproductive Health Care, v.5, n.1, p.16–24, 2000. doi: 10.1080/13625180008500376
SKOVLUND, C.W.; MØRCH, L.S.; KESSING, L.V.; LIDEGAARD, Ø. Association of Hormonal Contraception With Depression. JAMA Psychiatry, v.73, n.11, p.1154, 2016. doi: 10.1001/jamapsychiatry.2016.2387
SMITH, M.S.; FREEMAN, M.E.; NEILL, J.D. The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology, v.96, n.1, p.219–226, 1975. doi: 10.1210/endo-96-1-219
SMOLAREK, A.K.; SO, J.Y.; THOMAS, P.E.; LEE, H.J.; PAUL, S.; DOMBROWSKI, A.; WANG, C.X.; SAW, C.L.L.; KHOR, T.O.; KONG, A.N.T.; REUHL, K.; LEE, M.J.; YANG, C.S.; SUH, N. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Molecular Carcinogenesis, v.52, n.7, p.514–525, 2013. doi: 10.1002/mc.21886
TIWARI, S.; KAUR, K. Clinico-pathological association of BCL2 in invasive breast carcinoma: A study from tertiary care health centre in Northern India. Indian Journal of Pathology and Microbiology, v.68, n.2, p.324–327, 2025. doi: 10.4103/ijpm.ijpm_259_24
TOLG, C.; COWMAN, M.; TURLEY, E. Mouse Mammary Gland Whole Mount Preparation and Analysis. BIO-PROTOCOL, v.8, n.13, 2018. doi: 10.21769/BioProtoc.2915
UNITED NATIONS. United Nations Department of Economy and Social Affairs. Population Division 2024. World Contraceptive Use 2024.
VALENTINE, J.M.; AHMADIAN, M.; KEINAN, O.; ABU-ODEH, M.; ZHAO, P.; ZHOU, X.; KELLER, M.P.; GAO, H.; YU, R.T.; LIDDLE, C.; DOWNES, M.; ZHANG, J.; LUSIS, A.J.; ATTIE, A.D.; EVANS, R.M.; RYDÉN, M.; SALTIEL, A.R. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, v.132, n.2, 2022. doi: 10.1172/JCI153357
WAWRZKIEWICZ-JAŁOWIECKA, A.; LALIK, A.; SOVERAL, G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. International Journal of Molecular Sciences, v.22, n.10, p.5226, 2021. doi: 10.3390/ijms22105226
WORLD OBESITY FEDERATION [Internet]. Prevalence of adult overweight & obesity. Acesso em: 24 ago. 2024. Disponível em: <https://data.worldobesity.org/tables/prevalence-of-adult-overweight-obesity-2/>.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Gésily de Souza Aguiar , Janaína de Oliveira Chaves (In Memorian), Israelle Netto Freitas, Kênia Moreno de Oliveira, Ana Beatriz Barbosa da Silva, Stefanny Calixto da Silva, Rosane Aparecida Ribeiro , Helene Nara Henriques Blanc

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.







