The metabolic and anti-adiposity effects of oral Copaiba-oil supplementation are influenced by sex and obesity

Authors

DOI:

https://doi.org/10.52521/nutrivisa.v12i1.14328

Keywords:

Oil-resin; natural compounds; antioxidant; obesity.

Abstract

Copaiba oil (CO-oil) is commonly used as a topical healing and anti-inflammatory product in Brazil. However, recent data indicate that oral ingestion of CO-oil has anti-adiposity effects. In the present study, we evaluated the effects of oral CO-oil supplementation on body weight (BW), food intake (FI), adiposity and metabolism in male and female obese and non-obese rats. Monosodium glutamate (MSG; 4g/Kg) was administered during the first week after birth to induce hypothalamic obesity; control (CON; non-obese) rats received equimolar saline. After weaning (30 days of life), MSG and CON males and females were randomly subdivided into CO-oil supplemented (0.5mL/Kg; 3 times/week/8 weeks) and non-supplemented (NS) groups (n = 10-15 rats/group). BW, FI, feed efficiency (FE) and adiposity were registered, as well as fasting glucose (GLU), triglycerides (TGL) and total cholesterol (TC) values. Insulin resistance (IR) was assessed using the triglyceride-glucose index (TyG). Integrative principal component analysis (PCA) showed that chronic CO-oil supplementation alters FI and FE in MSG-obese and non-obese male rats, without modifying adiposity or metabolism. However, CO-oil supplementation of MSG-obese females reduced adiposity, TGL and improved IR, in relation to non-obese females. Thus, our data indicate that CO-oil oral supplementation influences males and females differently, having greater anti-adiposity effects and benefits on the metabolic state of obese female rats.

References

ALARCON-AGUILAR, F. J.; ALMANZA-PEREZ, J.; BLANCAS, G.; ANGELES, S.; GARCIA-MACEDO, R.; ROMAN, R.; CRUZ, M. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol. v. 599, n. 1 -3, 2008. doi: https://doi.org/10.1016/j.ejphar.2008.09.047.

AMES‐SIBIN, A. P.; BARIZÃO, C. L.; CASTRO‐GHIZONI, C.; SILVA, F. M. S.; SÁ‐NAKANISHI, A. B.; BRACHT, L.; BERSANI‐AMADO, C. A.; MARÇAL‐NATALI, M. R.; BRACHT, A.; COMAR, J. F. β‐Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats. J Cell Biochem. v. 119, n. 12, 2018. doi: https://doi.org/10.1002/jcb.27369.

BALBO, S. B.; BONFLEUR, M. L.; MATHIAS, P. C. F. Insulin Secretion and Acetylcholinesterase Activity in Monosodium Glutamate-Induced Obese Mice. Horm Res. v. 54, n. 4, 2000. doi: 10.1159/000053257.

BALBO, S. L.; GRASSIOLLI, S.; RIBEIRO, R. A.; BONFLEUR, M. L.; GRAVENA, C.; BRITO, M. N.; ANDREAZZI, A. E.; MATHIAS, P. C. F.; TORREZAN, R. Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine. v. 31, p. 142 – 148, 2007. doi: https://doi.org/10.1007/s12020-007-0021-z.

BASHA, R. H.; SANKARANARAYANAN, C. Protective role of β-caryophyllene, a sesquiterpene lactone on plasma and tissue glycoprotein components in streptozotocin-induced hyperglycemic rats. J Acute Med. v. 5, n. 1, 2015. doi: https://doi.org/10.1016/j.jacme.2015.02.001.

BASTARD, J. P.; MAACHI, M.; LAGATHU, C.; KIM, M. J.; CARON, M.; VIDAL, H.; CAPEAU, J.; FEVE, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. v. 17, n. 1, 2006. PMID: 16613757.

BERNARDIS, L. L.; PATTERSON, B. D. Correlation between “Lee Index” and carcass fat contente in wealing and adult female rats with hypothalamic lesions. J Endocrinol. v. 40, n. 4, 1968. doi: https://doi.org/10.1677/joe.0.0400527.

BETRÁN, M. A.; ESTORNELL, E.; BARBER, T.; CABO, J. Nitrogen metabolism in obesity induced by monosodium-L-glutamate in rats. Int J Obes Relat Metab Disord. v. 16, n. 8, p. 555 – 564, 1992. PMID: 1326485.

CARDINELLI, C. C.; SILVA, J. E. A.; RIBEIRO, R.; VEIGA-JUNIOR, V. F.; SANTOS, E. P.; FREITAS, Z. M. F. Toxicological Effects of Copaiba Oil (Copaifera spp.) and Its Active Components. Plants. v. 12, n. 5, 2023. doi: https://doi.org/10.3390/plants12051054.

CARVALHO, H. O.; SANTOS, I. V. F.; ROCHA, C. F.; BARROS, A. S. A.; FARIA, E.; SOUZA, B. S.; FERREIRA, I. M.; BEZERRA, R. M.; LIMA, C. S.; CASTRO, A. N.; CARVALHO, J. C. T. Effect of the treatment of Copaifera duckei oleoresin (copaiba) in streptozotocin-induced diabetic rats. Rev Bras Farmacogn. v. 28, n. 6, 2018. doi: https://doi.org/10.1016/j.bjp.2018.09.004.

CARVALHO, L. O.; MILKE, L. T. Importância terapêutica do óleo resina de copaíba: enfoque para ação anti-inflamatória e cicatrizante. Rev Eletr Farm. v. 11, n. 2, 2014. doi: https://doi.org/10.5216/ref.v11i2.27852.

DALENOGARE, D. P.; FERRO, P. R.; DE PRÁ, S. D. T.; RIGO, F. K.; DE DAVID ANTONIAZZI, C. T.; DE ALMEIDA, A. S.; DAMIANI, A. P.; STRAPAZZON, G.; DE OLIVEIRA SARDINHA, T. T.; GALVANI, N. C.; BOLIGON, A. A.; DE ANDRADE, V. M.; DA SILVA BRUM, E.; OLIVEIRA, S. M.; TREVISAN, G. Antinociceptive activity of Copaifera officinalis Jacq. L oil and kaurenoic acid in mice. Inflammopharmacology. v. 27, p. 829 – 844, 2019. doi: https://doi.org/10.1007/s10787-019-00588-3.

DIAS, D.; FONTES, L.; CROTTI, A.; AARESTRUP, B.; AARESTRUP, F.; DA SILVA FILHO, A.; CORRÊA, J. Copaiba Oil Suppresses Inflammatory Cytokines in Splenocytes of C57Bl/6 Mice Induced with Experimental Autoimmune Encephalomyelitis (EAE). Molecules. v. 19, n. 8, 2014. doi: https://doi.org/10.3390/molecules190812814.

DOLNIKOFF, M.; MARTÍN-HIDALGO, A.; MACHADO, U.; LIMA, F.; HERRERA, E. Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. Int J Obes. v. 25, p. 426 – 433, 2001. doi: https://doi.org/10.1038/sj.ijo.0801517.

ELFERS, C.; RALSTON, M.; ROTH, C. L. Studies of different female rat models of hypothalamic obesity. J Pediatr Endocrinol Metab. v. 24, n. 3, 2011. doi: https://doi.org/10.1515/jpem.2011.098.

ESTEVES, E. A.; OLIVEIRA, L. G.; PIRES, S. T.; BATISTA, Â. G.; DESSIMONI-PINTO, N. A. V.; SANTANA, R. C. Nutritional composition of Copaifera langsdorffii Desf. aril flour and its effect on serum lipids and glucose in rats. Food Res Int. v. 44, n. 7, 2011. doi: https://doi.org/10.1016/j.foodres.2010.12.005.

FREITAS, K. C.; AMANCIO, O. M. S.; MORAIS, M. B. High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase. Br J Nutr. v. 108, n. 6, 2012. doi: https://doi.org/10.1017/S0007114511006301.

GARCIA, R. F.; YAMAGUCHI, M. H. Óleo de Copaíba e Suas Propriedades Medicinais: Revisão Bibliográfica. Saúde Pes. v. 5, n. 1, 2012. ISSN: 1983-1870.

GERLACH, G.; LOEBER, S.; HERPERTZ, S. Personality disorders and obesity: a systematic review. Obes Rev. v. 17, n. 8, 2016. doi:: https://doi.org/10.1111/obr.12415.

GOOSSENS, G. H.; JOCKEN, J. W. E.; BLAAK, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol. v. 17, p. 47 – 66, 2021. doi: https://doi.org/10.1038/s41574-020-00431-8.

GUARESCHI, Z. M.; VALCANAIA, A. C.; CEGLAREK, V. M.; HOTZ, P.; AMARAL, B. K.; DE SOUZA, D. W.; DE SOUZA, T. A.; NARDELLI, T.; FERREIRA, T. R.; LEITE, N. C.; LUBACKZEUSKI, C.; EMILIO, H. R.; GRASSIOLLI, S. The effect of chronic oral vitamin D supplementation on adiposity and insulin secretion in hypothalamic obese rats. Br J Nutr. v. 121, n. 12, 2019. doi: https://doi.org/10.1017/S0007114519000667.

GUERRERO-ROMERO, F.; SIMENTAL-MENDÍA, L. E.; GONZÁLEZ-ORTIZ, M.; MARTÍNEZ-ABUNDIS, E.; RAMOS-ZAVALA, M. G.; HERNÁNDEZ-GONZÁLEZ, S. O.; JACQUES-CAMARENA, O.; RODRÍGUEZ-MORÁN, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J Clin Endocrinol Metab. v. 95, n. 7, 2010. doi: https://doi.org/10.1210/jc.2010-0288.

GUILHERME, A.; VIRBASIUS, J. V.; PURI, V.; CZECH, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Ver Mol Cell Biol. v. 9, p. 367-377, 2008. doi: https://doi.org/10.1038/nrm2391.

HIRATA, A. E.; ALVAREZ-ROJAS, F.; CAMPELLO CARVALHEIRA, J. B.; DE OLIVEIRA CARVALHO, C. R.; DOLNIKOFF, M. S.; ABDALLA SAAD, M. J. Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci. v. 73, n. 11, 2003. doi: https://doi.org/10.1016/S0024-3205(03)00477-6.

HORÁCIO, B. O.; GERON, V. L. M. G.; FÁVERO, M. T.; SPERETTA, G.; MENEZES, M. F. Ação antiinflamatória do óleo de copaíba. Rev Cien FAEMA. v. 8, n. 1, 2017. doi: https://doi.org/10.31072/rcf.v8i1.441

KAHN, S. E.; HULL, R. L.; UTZSCHNEIDER, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. v. 444, p. 840-846, 2006. doi: https://doi.org/10.1038/nature05482.

KAO, T. W.; HUANG, C. C. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci. v. 22, n. 13, 2021. doi: https://doi.org/10.3390/ijms22136862

KIM, C. H.; YOUNOSSI, Z. M. Nonalcoholic fatty liver disease: A manifestation of the metabolic syndrome. Cleve Clin J Med. v. 75, n. 10, 2008. doi: 10.3949/ccjm.75.10.721.

KWON, H.; PESSIN, J. E. Adipokines Mediate Inflammation and Insulin Resistance. Front Endocrinol. v. 4, n. 71, 2013. doi: https://doi.org/10.3389/fendo.2013.00071.

LIU, C.; YUAN, Y.; ZHOU, J.; HU, R.; JI, L.; JIANG, G. Piperine ameliorates insulin resistance via inhibiting metabolic inflammation in monosodium glutamate-treated obese mice. BMC Endocr Disord. v. 20, n. 152, 2020. doi: https://doi.org/10.1186/s12902-020-00617-1.

MATYŠKOVÁ, R.; MALETÍNSKÁ, L.; MAIXNEROVÁ, J.; PIRNÍK, Z.; KISS, A.; ŽELEZNÁ, B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57Bl/6 and NMRI mice. Physiol Res. v. 57, p. 727–734, 2008. doi: https://doi.org/10.33549/physiolres.931274.

MOSS, D.; MA, A.; CAMERON, D. P. Defective thermoregulatory thermogenesis in monosodium glutamate-induced obesity in mice. Metabolism. v. 34, n. 7, 1985. doi: https://doi.org/10.1016/0026-0495(85)90089-7.

NARDELLI, T. R.; RIBEIRO, R. A.; BALBO, S. L.; VANZELA, E. C.; CARNEIRO, E. M.; BOSCHERO, A. C.; BONFLEUR, M. L. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. v. 41, p. 901 – 908, 2011. doi: https://doi.org/10.1007/s00726-010-0789-7.

NICHOLSON, J. K.; HOLMES, E.; KINROSS, J.; BURCELIN, R.; GIBSON, G.; JIA, W.; PETTERSSON, S. Host-Gut Microbiota Metabolic Interactions. Science. v. 336, n. 6086, 2012. doi: https://doi.org/10.1126/science.1223813.

OLNEY, J. W. Brain Lesions, Obesity, and Other Disturbances in Mice Treated with Monosodium Glutamate. Science. v. 164, n. 3880, 1969. Doi: https://doi.org/10.1126/science.164.3880.719.

PALMER, B. F.; CLEGG, D. J. The sexual dimorphism of obesity. Mol Cell Endocrinol. v. 402, p. 113 – 119, 2015. doi: https://doi.org/10.1016/j.mce.2014.11.029.

PARK, H. J.; CHOI, J. M. Sex-specific regulation of immune responses by PPARs. Exp Mol Med. v. 49, e364, 2017. doi: https://doi.org/10.1038/emm.2017.102.

PAULA, M. G.; ROCHA, L. A.; TELLES, L. O.; MENDONÇA, S. T.; SINHORIN, V. D. G.; NASCIMENTO, A. F.; BOMFIM, G. F.; LUVIZOTTO, R. A. M. Óleo-resina de Copaíba atenua ganho de peso e não altera marcadores inflamatórios e do sistema redox no tecido adiposo de animais saudáveis. Sci Electronic Arch. v. 16, n. 4, 2023. doi: https://doi.org/10.36560/16420231694.

PERCIE DU SERT, N.; HURST, V.; AHLUWALIA, A.; ALAM, S.; AVEY, M. T.; BAKER, M.; BROWNE, W. J.; CLARK, A.; CUTHILL, I. C.; DIRNAGL, U.; EMERSON, M.; GARNER, P.; HOLGATE, S. T.; HOWELLS, D. W.; KARP, N. A.; LAZIC, S. E.; LIDSTER, K.; MACCALLUM, C. J.; MACLEOD, M.; WÜRBEL, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biol. v. 18, n. 7, 2020. doi: https://doi.org/10.1371/journal.pbio.3000410.

PIERI, F. A.; MUSSI, M. C.; FIORINI, J. E.; SCHNEEDORF, J. M. Efeitos clínicos e microbiológicos do óleo de copaíba (Copaifera officinalis) sobre bactérias formadoras de placa dental em cães. Arq Bras Med Vet Zoot. v. 62, n. 3, 2010. doi: https://doi.org/10.1590/S0102-09352010000300012.

PULCINELLI, R. R.; DELLA GIUSTINA, C. L.; BANDIERA, S.; ALMEIDA, F. B.; IZOLAN, L. R.; NIN, M. S.; LEAL, M. B.; GOMEZ, R. Copaiba (Copaifera reticulata) oleoresin reduces voluntary alcohol intake in rats. Acta Amazon. v. 52, n. 1, 2022. doi: https://doi.org/10.1590/1809-4392202102342.

R CORE TEAM (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed Jul 10 2022 at URL https://www.R-project.org/.

ROGERO, M.; CALDER, P. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. v. 10, n. 4, 2018. doi: https://doi.org/10.3390/nu10040432.

ROMAN-RAMOS, R.; ALMANZA-PEREZ, J. C.; GARCIA-MACEDO, R.; BLANCAS-FLORES, G.; FORTIS-BARRERA, A.; JASSO, E. I.; GARCIA-LORENZANA, M.; CAMPOS-SEPULVEDA, A. E.; CRUZ, M.; ALARCON-AGUILAR, F. J. Monosodium Glutamate Neonatal Intoxication Associated with Obesity in Adult Stage is Characterized by Chronic Inflammation and Increased mRNA Expression of Peroxisome Proliferator-Activated Receptors in Mice. Basic Clin Pharmacol Toxicol. v. 108, n. 6, 2011. doi: https://doi.org/10.1111/j.1742-7843.2011.00671.x.

RUDYK, M. P.; POZUR, V. V.; VOIEIKOVA, D. O.; HURMACH, Y.; KHRANOVSKA, N. M.; SKACHKOVA, O.; SVYATETSKA, V. M.; FEDORCHUK, O. G.; SKIVKA, L. M.; BEREHOVA, T.; OSTAPCHENKO, L. I. Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci Rep. v. 8, n. 5419, 2018. doi: https://doi.org/10.1038/s41598-018-23664-0.

SACHETTI, C. G.; FASCINELI, M. L.; SAMPAIO, J. A.; LAMEIRA, O. A.; CALDAS, E. D. Avaliação da toxicidade aguda e potencial neurotóxico do óleo-resina de copaíba (Copaifera reticulata Ducke, Fabaceae). Rev Bras Farmacogn. v. 19, n. 4, 2009. doi: https://doi.org/10.1590/S0102-695X2009000600025.

SILVA LIMA, C.; DE ALMEIDA E SILVA, U. D.; MACHADO GÓES, L. D.; MARTINS DE SA, H. B.; DE OLIVERIA CARVALHO, H.; PINHO FERNANDES, C.; NAVARRETE CASTRO, A.; TAVARES CARVALHO, J. C. Non-clinical toxicity study of the oil-resin and vaginal cream of Copaiba ( Copaifera duckei , Dwyer ). Cogent Biology. v. 3, n. 1, 2017. doi: https://doi.org/10.1080/23312025.2017.1394510.

SIMENTAL-MENDÍA, L. E.; RODRÍGUEZ-MORÁN, M.; GUERRERO-ROMERO, F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab Syndr and Relat Disord. v. 6, n. 4, 2008. doi: https://doi.org/10.1089/met.2008.0034.

SUNG, K. C.; JEONG, W. S.; WILD, S. H.; BYRNE, C. D. Combined Influence of Insulin Resistance, Overweight/Obesity, and Fatty Liver as Risk Factors for Type 2 Diabetes. Diabetes Care. v. 35, n. 4, 2012. doi: https://doi.org/10.2337/dc11-1853.

TELLES, L. O.; SILVA, B. S.; PAULINO, A. M. B.; MENDONÇA, S. T.; SINHORIN, V. D. G.; LIMA, M. C. F.; VEIGA JUNIOR, V. F.; ANDRIGHETTI, C. R.; NASCIMENTO, A. F.; BOMFIM, G. F.; LUIZOVOTTO, R. A. M. Copaiba oleoresin presents anti-obesogenic effect and mitigates inflammation and redox imbalance in adipose tissue. Acta Amazon. v. 52, n. 4, 2022. doi: https://doi.org/10.1590/1809-4392202201411.

TRINDADE, R.; SILVA, J.; SETZER, W. Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. Int J Mol Sci. v. 19, n. 5, 2018. doi: https://doi.org/10.3390/ijms19051511.

UEDA, S.; KITAZAWA, S.; ISHIDA, K.; NISHIKAWA, Y.; MATSUI, M.; MATSUMOTO, H.; AOKI, T.; NOZAKI, S.; TAKEDA, T.; TAMORI, Y.; AIBA, A.; KAHN, C. R.; KATAOKA, T.; SATOH, T. Crucial role of the small GTPase Rac1 in insulin‐stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. The FASEB J. v. 24, n. 7, 2010. doi: https://doi.org/10.1096/fj.09-137380.

URASAKI, Y.; BEAUMONT, C.; TALBOT, J. N.; HILL, D. K.; LE, T. T. Akt3 Regulates the Tissue-Specific Response to Copaiba Essential Oil. Int J Mol Sci. v. 21, n. 8, 2020. doi: https://doi.org/10.3390/ijms21082851.

VEIGA, V. F.; ROSAS, E. C.; CARVALHO, M. V.; HENRIQUES, M. G. M. O.; PINTO, A. C. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—A comparative study. J Ethnopharmacol. v. 112, n. 2, 2007. doi: https://doi.org/10.1016/j.jep.2007.03.005.

VON DIEMEN, V.; TRINDADE, E. N.; TRINDADE, M. R. M. Experimental model to induce obesity in rats. Acta Cir Bras. v. 21, n. 6, 2006. doi: https://doi.org/10.1590/S0102-86502006000600013.

WOB 2023. World Obesity Atlas 2023, World Obesity Federation. United Kingdom. Accessed Jul 10 2022 at URL https://coilink.org/20.500.12592/hrmxx8 on 19 Aug 2024. COI: 20.500. 12592/hrmxx8.

YEN, H. F.; HSIEH, C. T.; HSIEH, T. J.; CHANG, F. R.; WANG, C. K. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. J Food Drug Anal. v. 23, n. 1, 2015. doi: https://doi.org/10.1016/j.jfda.2014.02.004.

Published

2025-01-14

How to Cite

GUARESCHI, Z. M. N. de C.; URRUTIA, M. D.; DAUDT, B. M.; SIQUEIRA, B. S.; CEGLAREK, V. M.; DOS SANTOS, M. E.; GRASSIOLLI, S. The metabolic and anti-adiposity effects of oral Copaiba-oil supplementation are influenced by sex and obesity. Journal of Nutrition and Health Surveillance, Fortaleza, v. 12, n. 1, p. e14328, 2025. DOI: 10.52521/nutrivisa.v12i1.14328. Disponível em: https://revistas.uece.br/index.php/nutrivisa/article/view/14328. Acesso em: 22 jan. 2025.

Issue

Section

Artigos originais