The metabolic and anti-adiposity effects of oral Copaiba-oil supplementation are influenced by sex and obesity
DOI:
https://doi.org/10.52521/nutrivisa.v12i1.14328Palavras-chave:
Oil-resin; natural compounds; antioxidant; obesity.Resumo
Copaiba oil (CO-oil) is commonly used as a topical healing and anti-inflammatory product in Brazil. However, recent data indicate that oral ingestion of CO-oil has anti-adiposity effects. In the present study, we evaluated the effects of oral CO-oil supplementation on body weight (BW), food intake (FI), adiposity and metabolism in male and female obese and non-obese rats. Monosodium glutamate (MSG; 4g/Kg) was administered during the first week after birth to induce hypothalamic obesity; control (CON; non-obese) rats received equimolar saline. After weaning (30 days of life), MSG and CON males and females were randomly subdivided into CO-oil supplemented (0.5mL/Kg; 3 times/week/8 weeks) and non-supplemented (NS) groups (n = 10-15 rats/group). BW, FI, feed efficiency (FE) and adiposity were registered, as well as fasting glucose (GLU), triglycerides (TGL) and total cholesterol (TC) values. Insulin resistance (IR) was assessed using the triglyceride-glucose index (TyG). Integrative principal component analysis (PCA) showed that chronic CO-oil supplementation alters FI and FE in MSG-obese and non-obese male rats, without modifying adiposity or metabolism. However, CO-oil supplementation of MSG-obese females reduced adiposity, TGL and improved IR, in relation to non-obese females. Thus, our data indicate that CO-oil oral supplementation influences males and females differently, having greater anti-adiposity effects and benefits on the metabolic state of obese female rats.
Referências
ALARCON-AGUILAR, F. J.; ALMANZA-PEREZ, J.; BLANCAS, G.; ANGELES, S.; GARCIA-MACEDO, R.; ROMAN, R.; CRUZ, M. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol. v. 599, n. 1 -3, 2008. doi: https://doi.org/10.1016/j.ejphar.2008.09.047.
AMES‐SIBIN, A. P.; BARIZÃO, C. L.; CASTRO‐GHIZONI, C.; SILVA, F. M. S.; SÁ‐NAKANISHI, A. B.; BRACHT, L.; BERSANI‐AMADO, C. A.; MARÇAL‐NATALI, M. R.; BRACHT, A.; COMAR, J. F. β‐Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats. J Cell Biochem. v. 119, n. 12, 2018. doi: https://doi.org/10.1002/jcb.27369.
BALBO, S. B.; BONFLEUR, M. L.; MATHIAS, P. C. F. Insulin Secretion and Acetylcholinesterase Activity in Monosodium Glutamate-Induced Obese Mice. Horm Res. v. 54, n. 4, 2000. doi: 10.1159/000053257.
BALBO, S. L.; GRASSIOLLI, S.; RIBEIRO, R. A.; BONFLEUR, M. L.; GRAVENA, C.; BRITO, M. N.; ANDREAZZI, A. E.; MATHIAS, P. C. F.; TORREZAN, R. Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine. v. 31, p. 142 – 148, 2007. doi: https://doi.org/10.1007/s12020-007-0021-z.
BASHA, R. H.; SANKARANARAYANAN, C. Protective role of β-caryophyllene, a sesquiterpene lactone on plasma and tissue glycoprotein components in streptozotocin-induced hyperglycemic rats. J Acute Med. v. 5, n. 1, 2015. doi: https://doi.org/10.1016/j.jacme.2015.02.001.
BASTARD, J. P.; MAACHI, M.; LAGATHU, C.; KIM, M. J.; CARON, M.; VIDAL, H.; CAPEAU, J.; FEVE, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. v. 17, n. 1, 2006. PMID: 16613757.
BERNARDIS, L. L.; PATTERSON, B. D. Correlation between “Lee Index” and carcass fat contente in wealing and adult female rats with hypothalamic lesions. J Endocrinol. v. 40, n. 4, 1968. doi: https://doi.org/10.1677/joe.0.0400527.
BETRÁN, M. A.; ESTORNELL, E.; BARBER, T.; CABO, J. Nitrogen metabolism in obesity induced by monosodium-L-glutamate in rats. Int J Obes Relat Metab Disord. v. 16, n. 8, p. 555 – 564, 1992. PMID: 1326485.
CARDINELLI, C. C.; SILVA, J. E. A.; RIBEIRO, R.; VEIGA-JUNIOR, V. F.; SANTOS, E. P.; FREITAS, Z. M. F. Toxicological Effects of Copaiba Oil (Copaifera spp.) and Its Active Components. Plants. v. 12, n. 5, 2023. doi: https://doi.org/10.3390/plants12051054.
CARVALHO, H. O.; SANTOS, I. V. F.; ROCHA, C. F.; BARROS, A. S. A.; FARIA, E.; SOUZA, B. S.; FERREIRA, I. M.; BEZERRA, R. M.; LIMA, C. S.; CASTRO, A. N.; CARVALHO, J. C. T. Effect of the treatment of Copaifera duckei oleoresin (copaiba) in streptozotocin-induced diabetic rats. Rev Bras Farmacogn. v. 28, n. 6, 2018. doi: https://doi.org/10.1016/j.bjp.2018.09.004.
CARVALHO, L. O.; MILKE, L. T. Importância terapêutica do óleo resina de copaíba: enfoque para ação anti-inflamatória e cicatrizante. Rev Eletr Farm. v. 11, n. 2, 2014. doi: https://doi.org/10.5216/ref.v11i2.27852.
DALENOGARE, D. P.; FERRO, P. R.; DE PRÁ, S. D. T.; RIGO, F. K.; DE DAVID ANTONIAZZI, C. T.; DE ALMEIDA, A. S.; DAMIANI, A. P.; STRAPAZZON, G.; DE OLIVEIRA SARDINHA, T. T.; GALVANI, N. C.; BOLIGON, A. A.; DE ANDRADE, V. M.; DA SILVA BRUM, E.; OLIVEIRA, S. M.; TREVISAN, G. Antinociceptive activity of Copaifera officinalis Jacq. L oil and kaurenoic acid in mice. Inflammopharmacology. v. 27, p. 829 – 844, 2019. doi: https://doi.org/10.1007/s10787-019-00588-3.
DIAS, D.; FONTES, L.; CROTTI, A.; AARESTRUP, B.; AARESTRUP, F.; DA SILVA FILHO, A.; CORRÊA, J. Copaiba Oil Suppresses Inflammatory Cytokines in Splenocytes of C57Bl/6 Mice Induced with Experimental Autoimmune Encephalomyelitis (EAE). Molecules. v. 19, n. 8, 2014. doi: https://doi.org/10.3390/molecules190812814.
DOLNIKOFF, M.; MARTÍN-HIDALGO, A.; MACHADO, U.; LIMA, F.; HERRERA, E. Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. Int J Obes. v. 25, p. 426 – 433, 2001. doi: https://doi.org/10.1038/sj.ijo.0801517.
ELFERS, C.; RALSTON, M.; ROTH, C. L. Studies of different female rat models of hypothalamic obesity. J Pediatr Endocrinol Metab. v. 24, n. 3, 2011. doi: https://doi.org/10.1515/jpem.2011.098.
ESTEVES, E. A.; OLIVEIRA, L. G.; PIRES, S. T.; BATISTA, Â. G.; DESSIMONI-PINTO, N. A. V.; SANTANA, R. C. Nutritional composition of Copaifera langsdorffii Desf. aril flour and its effect on serum lipids and glucose in rats. Food Res Int. v. 44, n. 7, 2011. doi: https://doi.org/10.1016/j.foodres.2010.12.005.
FREITAS, K. C.; AMANCIO, O. M. S.; MORAIS, M. B. High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase. Br J Nutr. v. 108, n. 6, 2012. doi: https://doi.org/10.1017/S0007114511006301.
GARCIA, R. F.; YAMAGUCHI, M. H. Óleo de Copaíba e Suas Propriedades Medicinais: Revisão Bibliográfica. Saúde Pes. v. 5, n. 1, 2012. ISSN: 1983-1870.
GERLACH, G.; LOEBER, S.; HERPERTZ, S. Personality disorders and obesity: a systematic review. Obes Rev. v. 17, n. 8, 2016. doi:: https://doi.org/10.1111/obr.12415.
GOOSSENS, G. H.; JOCKEN, J. W. E.; BLAAK, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol. v. 17, p. 47 – 66, 2021. doi: https://doi.org/10.1038/s41574-020-00431-8.
GUARESCHI, Z. M.; VALCANAIA, A. C.; CEGLAREK, V. M.; HOTZ, P.; AMARAL, B. K.; DE SOUZA, D. W.; DE SOUZA, T. A.; NARDELLI, T.; FERREIRA, T. R.; LEITE, N. C.; LUBACKZEUSKI, C.; EMILIO, H. R.; GRASSIOLLI, S. The effect of chronic oral vitamin D supplementation on adiposity and insulin secretion in hypothalamic obese rats. Br J Nutr. v. 121, n. 12, 2019. doi: https://doi.org/10.1017/S0007114519000667.
GUERRERO-ROMERO, F.; SIMENTAL-MENDÍA, L. E.; GONZÁLEZ-ORTIZ, M.; MARTÍNEZ-ABUNDIS, E.; RAMOS-ZAVALA, M. G.; HERNÁNDEZ-GONZÁLEZ, S. O.; JACQUES-CAMARENA, O.; RODRÍGUEZ-MORÁN, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J Clin Endocrinol Metab. v. 95, n. 7, 2010. doi: https://doi.org/10.1210/jc.2010-0288.
GUILHERME, A.; VIRBASIUS, J. V.; PURI, V.; CZECH, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Ver Mol Cell Biol. v. 9, p. 367-377, 2008. doi: https://doi.org/10.1038/nrm2391.
HIRATA, A. E.; ALVAREZ-ROJAS, F.; CAMPELLO CARVALHEIRA, J. B.; DE OLIVEIRA CARVALHO, C. R.; DOLNIKOFF, M. S.; ABDALLA SAAD, M. J. Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci. v. 73, n. 11, 2003. doi: https://doi.org/10.1016/S0024-3205(03)00477-6.
HORÁCIO, B. O.; GERON, V. L. M. G.; FÁVERO, M. T.; SPERETTA, G.; MENEZES, M. F. Ação antiinflamatória do óleo de copaíba. Rev Cien FAEMA. v. 8, n. 1, 2017. doi: https://doi.org/10.31072/rcf.v8i1.441
KAHN, S. E.; HULL, R. L.; UTZSCHNEIDER, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. v. 444, p. 840-846, 2006. doi: https://doi.org/10.1038/nature05482.
KAO, T. W.; HUANG, C. C. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci. v. 22, n. 13, 2021. doi: https://doi.org/10.3390/ijms22136862
KIM, C. H.; YOUNOSSI, Z. M. Nonalcoholic fatty liver disease: A manifestation of the metabolic syndrome. Cleve Clin J Med. v. 75, n. 10, 2008. doi: 10.3949/ccjm.75.10.721.
KWON, H.; PESSIN, J. E. Adipokines Mediate Inflammation and Insulin Resistance. Front Endocrinol. v. 4, n. 71, 2013. doi: https://doi.org/10.3389/fendo.2013.00071.
LIU, C.; YUAN, Y.; ZHOU, J.; HU, R.; JI, L.; JIANG, G. Piperine ameliorates insulin resistance via inhibiting metabolic inflammation in monosodium glutamate-treated obese mice. BMC Endocr Disord. v. 20, n. 152, 2020. doi: https://doi.org/10.1186/s12902-020-00617-1.
MATYŠKOVÁ, R.; MALETÍNSKÁ, L.; MAIXNEROVÁ, J.; PIRNÍK, Z.; KISS, A.; ŽELEZNÁ, B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57Bl/6 and NMRI mice. Physiol Res. v. 57, p. 727–734, 2008. doi: https://doi.org/10.33549/physiolres.931274.
MOSS, D.; MA, A.; CAMERON, D. P. Defective thermoregulatory thermogenesis in monosodium glutamate-induced obesity in mice. Metabolism. v. 34, n. 7, 1985. doi: https://doi.org/10.1016/0026-0495(85)90089-7.
NARDELLI, T. R.; RIBEIRO, R. A.; BALBO, S. L.; VANZELA, E. C.; CARNEIRO, E. M.; BOSCHERO, A. C.; BONFLEUR, M. L. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. v. 41, p. 901 – 908, 2011. doi: https://doi.org/10.1007/s00726-010-0789-7.
NICHOLSON, J. K.; HOLMES, E.; KINROSS, J.; BURCELIN, R.; GIBSON, G.; JIA, W.; PETTERSSON, S. Host-Gut Microbiota Metabolic Interactions. Science. v. 336, n. 6086, 2012. doi: https://doi.org/10.1126/science.1223813.
OLNEY, J. W. Brain Lesions, Obesity, and Other Disturbances in Mice Treated with Monosodium Glutamate. Science. v. 164, n. 3880, 1969. Doi: https://doi.org/10.1126/science.164.3880.719.
PALMER, B. F.; CLEGG, D. J. The sexual dimorphism of obesity. Mol Cell Endocrinol. v. 402, p. 113 – 119, 2015. doi: https://doi.org/10.1016/j.mce.2014.11.029.
PARK, H. J.; CHOI, J. M. Sex-specific regulation of immune responses by PPARs. Exp Mol Med. v. 49, e364, 2017. doi: https://doi.org/10.1038/emm.2017.102.
PAULA, M. G.; ROCHA, L. A.; TELLES, L. O.; MENDONÇA, S. T.; SINHORIN, V. D. G.; NASCIMENTO, A. F.; BOMFIM, G. F.; LUVIZOTTO, R. A. M. Óleo-resina de Copaíba atenua ganho de peso e não altera marcadores inflamatórios e do sistema redox no tecido adiposo de animais saudáveis. Sci Electronic Arch. v. 16, n. 4, 2023. doi: https://doi.org/10.36560/16420231694.
PERCIE DU SERT, N.; HURST, V.; AHLUWALIA, A.; ALAM, S.; AVEY, M. T.; BAKER, M.; BROWNE, W. J.; CLARK, A.; CUTHILL, I. C.; DIRNAGL, U.; EMERSON, M.; GARNER, P.; HOLGATE, S. T.; HOWELLS, D. W.; KARP, N. A.; LAZIC, S. E.; LIDSTER, K.; MACCALLUM, C. J.; MACLEOD, M.; WÜRBEL, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biol. v. 18, n. 7, 2020. doi: https://doi.org/10.1371/journal.pbio.3000410.
PIERI, F. A.; MUSSI, M. C.; FIORINI, J. E.; SCHNEEDORF, J. M. Efeitos clínicos e microbiológicos do óleo de copaíba (Copaifera officinalis) sobre bactérias formadoras de placa dental em cães. Arq Bras Med Vet Zoot. v. 62, n. 3, 2010. doi: https://doi.org/10.1590/S0102-09352010000300012.
PULCINELLI, R. R.; DELLA GIUSTINA, C. L.; BANDIERA, S.; ALMEIDA, F. B.; IZOLAN, L. R.; NIN, M. S.; LEAL, M. B.; GOMEZ, R. Copaiba (Copaifera reticulata) oleoresin reduces voluntary alcohol intake in rats. Acta Amazon. v. 52, n. 1, 2022. doi: https://doi.org/10.1590/1809-4392202102342.
R CORE TEAM (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed Jul 10 2022 at URL https://www.R-project.org/.
ROGERO, M.; CALDER, P. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. v. 10, n. 4, 2018. doi: https://doi.org/10.3390/nu10040432.
ROMAN-RAMOS, R.; ALMANZA-PEREZ, J. C.; GARCIA-MACEDO, R.; BLANCAS-FLORES, G.; FORTIS-BARRERA, A.; JASSO, E. I.; GARCIA-LORENZANA, M.; CAMPOS-SEPULVEDA, A. E.; CRUZ, M.; ALARCON-AGUILAR, F. J. Monosodium Glutamate Neonatal Intoxication Associated with Obesity in Adult Stage is Characterized by Chronic Inflammation and Increased mRNA Expression of Peroxisome Proliferator-Activated Receptors in Mice. Basic Clin Pharmacol Toxicol. v. 108, n. 6, 2011. doi: https://doi.org/10.1111/j.1742-7843.2011.00671.x.
RUDYK, M. P.; POZUR, V. V.; VOIEIKOVA, D. O.; HURMACH, Y.; KHRANOVSKA, N. M.; SKACHKOVA, O.; SVYATETSKA, V. M.; FEDORCHUK, O. G.; SKIVKA, L. M.; BEREHOVA, T.; OSTAPCHENKO, L. I. Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci Rep. v. 8, n. 5419, 2018. doi: https://doi.org/10.1038/s41598-018-23664-0.
SACHETTI, C. G.; FASCINELI, M. L.; SAMPAIO, J. A.; LAMEIRA, O. A.; CALDAS, E. D. Avaliação da toxicidade aguda e potencial neurotóxico do óleo-resina de copaíba (Copaifera reticulata Ducke, Fabaceae). Rev Bras Farmacogn. v. 19, n. 4, 2009. doi: https://doi.org/10.1590/S0102-695X2009000600025.
SILVA LIMA, C.; DE ALMEIDA E SILVA, U. D.; MACHADO GÓES, L. D.; MARTINS DE SA, H. B.; DE OLIVERIA CARVALHO, H.; PINHO FERNANDES, C.; NAVARRETE CASTRO, A.; TAVARES CARVALHO, J. C. Non-clinical toxicity study of the oil-resin and vaginal cream of Copaiba ( Copaifera duckei , Dwyer ). Cogent Biology. v. 3, n. 1, 2017. doi: https://doi.org/10.1080/23312025.2017.1394510.
SIMENTAL-MENDÍA, L. E.; RODRÍGUEZ-MORÁN, M.; GUERRERO-ROMERO, F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab Syndr and Relat Disord. v. 6, n. 4, 2008. doi: https://doi.org/10.1089/met.2008.0034.
SUNG, K. C.; JEONG, W. S.; WILD, S. H.; BYRNE, C. D. Combined Influence of Insulin Resistance, Overweight/Obesity, and Fatty Liver as Risk Factors for Type 2 Diabetes. Diabetes Care. v. 35, n. 4, 2012. doi: https://doi.org/10.2337/dc11-1853.
TELLES, L. O.; SILVA, B. S.; PAULINO, A. M. B.; MENDONÇA, S. T.; SINHORIN, V. D. G.; LIMA, M. C. F.; VEIGA JUNIOR, V. F.; ANDRIGHETTI, C. R.; NASCIMENTO, A. F.; BOMFIM, G. F.; LUIZOVOTTO, R. A. M. Copaiba oleoresin presents anti-obesogenic effect and mitigates inflammation and redox imbalance in adipose tissue. Acta Amazon. v. 52, n. 4, 2022. doi: https://doi.org/10.1590/1809-4392202201411.
TRINDADE, R.; SILVA, J.; SETZER, W. Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. Int J Mol Sci. v. 19, n. 5, 2018. doi: https://doi.org/10.3390/ijms19051511.
UEDA, S.; KITAZAWA, S.; ISHIDA, K.; NISHIKAWA, Y.; MATSUI, M.; MATSUMOTO, H.; AOKI, T.; NOZAKI, S.; TAKEDA, T.; TAMORI, Y.; AIBA, A.; KAHN, C. R.; KATAOKA, T.; SATOH, T. Crucial role of the small GTPase Rac1 in insulin‐stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. The FASEB J. v. 24, n. 7, 2010. doi: https://doi.org/10.1096/fj.09-137380.
URASAKI, Y.; BEAUMONT, C.; TALBOT, J. N.; HILL, D. K.; LE, T. T. Akt3 Regulates the Tissue-Specific Response to Copaiba Essential Oil. Int J Mol Sci. v. 21, n. 8, 2020. doi: https://doi.org/10.3390/ijms21082851.
VEIGA, V. F.; ROSAS, E. C.; CARVALHO, M. V.; HENRIQUES, M. G. M. O.; PINTO, A. C. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—A comparative study. J Ethnopharmacol. v. 112, n. 2, 2007. doi: https://doi.org/10.1016/j.jep.2007.03.005.
VON DIEMEN, V.; TRINDADE, E. N.; TRINDADE, M. R. M. Experimental model to induce obesity in rats. Acta Cir Bras. v. 21, n. 6, 2006. doi: https://doi.org/10.1590/S0102-86502006000600013.
WOB 2023. World Obesity Atlas 2023, World Obesity Federation. United Kingdom. Accessed Jul 10 2022 at URL https://coilink.org/20.500.12592/hrmxx8 on 19 Aug 2024. COI: 20.500. 12592/hrmxx8.
YEN, H. F.; HSIEH, C. T.; HSIEH, T. J.; CHANG, F. R.; WANG, C. K. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. J Food Drug Anal. v. 23, n. 1, 2015. doi: https://doi.org/10.1016/j.jfda.2014.02.004.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Zoé Maria Neves de Carvalho Guareschi, Marianela Diaz Urrutia, Beatriz Machado Daudt, Bruna S. Siqueira, Vanessa Marieli Ceglarek, Marcia Eduarda Dos Santos, Sabrina Grassiolli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.