Métodos para redução e inativação de fatores antinutricionais em alimentos de origem vegetal: uma revisão

Autores

  • Fabiana de Oliveira Pereira Instituto Federal do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA) https://orcid.org/0000-0001-5687-1655
  • Ingryd Rodrigues Martins Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA) https://orcid.org/0000-0002-5989-0314
  • Suezilde da Conceição Amaral Ribeiro Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA) https://orcid.org/0000-0002-1661-7609
  • Júlio Cesar Suzuki Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA) https://orcid.org/0000-0001-7499-3242
  • Maria Regina Sarkis Peixoto Joele IFPA https://orcid.org/0000-0001-5442-0615

DOI:

https://doi.org/10.59171/nutrivisa-2023v10e11010

Palavras-chave:

Vegetais, Nutrientes, Digestão, Disponibilidade biológica, Substâncias tóxicas

Resumo

O consumo de produtos de origem vegetal a base de plantas tem sido proposta como uma alternativa eficiente na prevenção de doenças crônicas. No entanto, diferentes plantas produzem fatores antinutricionais, que podem apresentar efeitos negativos e/ou positivos à saúde. Diante do exposto, o presente trabalho apresenta uma revisão integrativa, onde foram estabelecidas as seguintes perguntas norteadoras: “Os antinutrientes dos alimentos de origem vegetal são avaliados na escolha de uma dieta equilibrada e saudável?” “Qual a importância de analisar seus efeitos na saúde humana? São considerados vilões ou heróis?”. A revisão integrativa foi realizada por meio do levantamento de estudos nacionais e internacionais no Portal de Periódicos da Capes, totalizando 1094 artigos científicos. Na triagem, foram filtrados 343, dos quais 127 foram classificados para a apresentação do cenário atual e das perspectivas esperadas sobre a temática elencada. Alguns compostos com ação antinutricional, tem sido considerados danosos à saúde em virtude do seu potencial de reduzir a biodisponibilidade de nutrientes essenciais. Apesar das evidências, pesquisas relatam resultados antagônicos, pois alguns destes, tornaram-se conhecidos por seus efeitos benéficos, com potenciais terapêuticos em diversas doenças crônicas. À vista disso, o consumo de compostos com fatores antinutricionais é relativo com relação às vantagens e desvantagens à saúde, que em certos casos, podem ter desde a ação terapêutica até efeitos prejudiciais, em indivíduos susceptíveis a dietas restritivas à base de plantas. Dessa forma, faz-se necessário, adotar técnicas como imersão, cozimento, fermentação, aquecimento dielétrico, extrusão e irradiação γ, para reduzir ou inativar os compostos antinutricionais a níveis seguros na ingestão de vegetais para o consumidor.

Biografia do Autor

Fabiana de Oliveira Pereira, Instituto Federal do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA)

Possui graduação em Engenharia de Alimentos (UFT); Formação Pedagógica de Docentes (UEMA); Especialização em Processamento e controle de qualidade em carne, leite e ovos (UFLA) e Mestrado em Ciência e Tecnologia de Alimentos (UFT). Atualmente é tutor presencial da Universidade Estadual do Maranhão e Técnico de laboratório/alimentos do Instituto Federal de Educação, Ciência e Tecnologia do Maranhão. Tem experiência na área de Ciência e Tecnologia de Alimentos; professora auxiliar no curso de Farmácia e Nutrição, disciplinas: Tecnologia de alimentos, Gestão da qualidade de alimentos, Bromatologia e Microbiologia de Alimentos, na FACIMP ? WYDEN.

Ingryd Rodrigues Martins, Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA)

Possui graduação em Tecnologia de Alimentos pela Universidade do Estado do Pará (UEPA). Mestrado em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares pelo Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA). Especialização em Ciência de Alimentos com Ênfase em Tecnologia de Frutas e Hortaliças (em andamento/UFPEL). Doutoranda em Desenvolvimento Rural e Sistemas Agroalimentares pelo Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA).Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase nas temáticas, PD&I (pesquisa, desenvolvimento e inovação), aproveitamento de subprodutos agroalimentares e controle de qualidade na indústria de alimentos.

Suezilde da Conceição Amaral Ribeiro, Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA)

Possui graduações em Engenharia Química, pela Universidade Federal do Pará, e em Licenciatura em Ciências Biológicas, pela Faculdade Única de Ipatinga; especializações em Tecnologia de Alimentos pela Universidade Federal do Pará e em Ecologia e Biodiversidade, pela Faculdade Única de Ipatinga; mestrado em Engenharia de Alimentos pela Universidade Estadual de Campinas e doutorado em Engenharia de Alimentos pela Universidade Estadual de Campinas. Foi pesquisadora DT do CNPq de 2013 a 2016, Coordenadora de Pesquisa da Pró-reitoria de Pesquisa e Pós-graduação de 2015 a 2016 e da Rede de Incubadoras de Empreendimentos Solidários do Instituto Federal de Educação, Ciência e Tecnologia do Pará. Foi coordenadora de Inovação e do Núcleo de Inovação Tecnológica do IFPA de 2013 a 2014 e Coordenadora do Curso de Especialização em Gestão da Inovação e Propriedade Intelectual. do IFPA. Atualmente, é Diretora de extensão e relações interinstitucionais do Instituto Federal de Educação, Ciência e Tecnologia do Pará, vice-coordenadora do Programa de Pós-Graduação em Propriedade Intelectual e Transferência de Tecnologia para a Inovação, PROFNIT polo IFPA - Belém. É professora D4 do Instituto Federal de Educação, Ciência e Tecnologia do Pará-Campus Belém, atuando no curso de curso de graduação em Ciências Biológicas e do Programa de Mestrado profissional em Propriedade Intelectual e Transferência de Tecnologia para a Inovação - PROFNIT, atua também no IFPA - Campus Castanhal nos Programas de mestrado em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares e de Doutorado Desenvolvimento Rural e Sistemas Agroalimentares. É representante do IFPA no Fórum de Indicação Geográfica e Marcas coletivas do estado do Pará. É professora adjunta da Universidade do Estado do Pará no curso de graduação em Tecnologia de Alimentos, onde foi coordenadora do Dinter Novas Fronteiras em Tecnologia de Alimentos entre a UEPA e UFV e também exerceu por três anos a Coordenadora do Laboratório de Tecnologia de Alimentos. É professora colaboradora da Universidade Federal do Pará no curso de Mestrado em Ciência e Tecnologia de Alimentos. Atua nas áreas de Engenharia, Ciência e Tecnologia de Alimentos e na área de Meio Ambiente e Educação.

Júlio Cesar Suzuki, Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA)/Programa de Pós-Graduação em Desenvolvimento Rural e Gestão de Empreendimentos Agroalimentares (PPGDRGEA)

Possui Licenciatura em Geografia pela Universidade Federal de Mato Grosso (1992), Bacharelado em Letras (Português, com ênfase em estudos literários) pela Universidade Federal do Paraná (2004), Licenciatura em Química pelo Instituto Federal de São Paulo (2020), Bacharelado em Letras (Francês/Português) pela Faculdade de Filosofia, Letras e Ciências Humanas/USP (2022), Licenciatura em Letras (Francês/Português) pela Faculdade de Filosofia, Letras e Ciências Humanas/USP (2022), mestrado em Geografia (Geografia Humana) pela Universidade de São Paulo (1997) e doutorado em Geografia (Geografia Humana) pela Universidade de São Paulo (2002). Atualmente é professor doutor ii - Biblioteca Brasiliana Guita e José Mindlin e professor associado da Universidade de São Paulo. Tem experiência na área de Geografia, com ênfase em Geografia Urbana, atuando principalmente nos seguintes temas: são paulo, cidade, geografia, agricultura e urbanização.

Referências

ABDI, F.; RAHNEMAEI, F. A.; ROOZBEH, N.; PAKZAD, R. Impact of phytoestrogens on treatment of urogenital menopause symptoms: A systematic review of randomized clinical trials. European Journal of Obstetrics, Gynecology, and Reproductive Biology, v. 261, p. 222-235, 2021. doi: https://doi.org/10.1016/j.ejogrb.2021.03.039.

ACQUAH, C.; OHEMENG-BOAHEN, G.; POWER, K. A.; TOSH, S. M. The effect of pro-cessing on bioactive compounds and nutritional qualities of pulses in meeting the sus-tainable development goal 2. Frontiers in Sustainable Food Systems, v. 5, 681662, 2021. doi: https://doi.org/10.3389/fsufs.2021.681662.

AERTS, R. J.; BARRY, T. N.; MCNABB, W. C. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems & Environment, v. 75, n.1-2, p. 1-12, 1999. doi: https://doi.org/10.1016/S0167-8809(99)00062-6.

ALAJAJI, S. A.; EL-ADAWY, T. A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis, v. 19, n. 8, p. 806-812, 2006. doi: https://doi.org/10.1016/j.jfca.2006.03.015.

AL-KAISEY, M. T.; ALWAN, A. K. H.; MOHAMMAD, M. H.; SAEED, A. H. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry, v. 67, Issues 3-4, 2003, p. 493-496, 2003. doi: https://doi.org/10.1016/S0969-806X(03)00091-4.

ALMEIDA, A. P. M. G.; KOMMERS, G. D.; NOGUEIRA, A. P. A.; JÚNIOR, L. G. B.; MARQUES, B. M. F. P.; LEMOS, R. A. A. Avaliação do efeito tóxico de Leucaena leucocephala (Leg. Mimosoideae) em ovinos. Pesquisa Veterinária Brasileira, v. 26, n. 3, p. 190-194, 2006. doi: https://doi.org/10.1590/S0100-736X2006000300011.

ALMEIDA, M. E. F. de; JUNQUEIRA, A. M. B.; SIMÃO, A. A.; CORRÊA, A. D. Caracterização química das hortaliças não-convencionais conhecidas como ora-pro-nobis. Bioscience Journal, v. 30, p. 431-439, 2014. Acesso em: 12.06.22. Disponível em: https://seer.ufu.br/index.php/biosciencejournal/article/view/17555.

AMIN, H. A. S.; HANNA, A. G.; MOHAMED, S. S. Comparative studies of acidic and enzymatic hydrolysis for production of soyasapogenols from soybean saponin. Biocatalysis and Biotransformation, v. 29, n. 6, p. 311-319, 2011. doi: 10.2174/2210289201607010134.

ARAÚJO, A. C. P.; MIDIO, A. F. Nitratos e nitritos en alimentos infantilis industrializados y caseros. Alimentaria, v. 27, n. 209, p. 69-75, 1990. doi: https://doi.org/10.3168/jds.2019-17367.

AUNE, D.; GIOVANNUCCI, E.; BOFFETTA, P.; FADNES, L. T.; KEUM, N.; NORAT, T.; GREENWOOD, D. C.; RIBOLI, E.; VATTEN, L. J.; TONSTAD, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology. v. 46, n. 3, p. 1029-1056, 2017. doi: https://doi.org/10.1093/ije/dyw319.

BABBAR, N.; OBEROI, H. S.; SANDHU, S. K. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science Nutrition, v. 55, n. 3, p. 319-37, 2015. doi: https://doi.org/10.1080/10408398.2011.653734.

BELE, A. A.; JADHAV, V. M.; KADAM, V. J. Potential of tannnins: A review. Asian Journal of Plant Sciences, v. 9, n. 4, p. 209-214, 2010. doi: 10.3923/ajps.2010.209.214.

BELMAR, R.; NAVA-MONTERO, R.; SANDOVAL-CASTRO, C.; MCNAB, J. Jack bean (Canavalia ensifomis L. DC) in poultry diets: Antinutritional factors and detoxification studies – a review. World's Poultry Science Journal, v. 55, n. 1, p. 37-59, 1999. doi: https://doi.org/10.1079/WPS19990004.

BENEVIDES, C. M. de J.; SOUZA, M. V.; SOUZA, R. D. B.; LOPES, M. V. Fatores antinutricionais em alimentos: revisão. Segurança Alimentar e Nutricional, v. 18, n. 2, p. 67–79, 2015. doi: https://doi.org/10.20396/san.v18i2.8634679.

BEZDEKOVA, J.; VLCNOVSKA, M.; ZEMANKOVA, K.; BACOVA, R.; KOLACKOVA, M.; LEDNICKY, T.; PRIBYL, J.; RICHTERA, L.; VANICKOVA, L.; ADAM, V.; VACULOVICOVA, M. Molecularly imprinted polymers and capillary electrophoresis for sensing phytoestrogens in milk. Journal of Dairy Science, v. 103, n. 6, p. 4941-4950, 2020. doi: https://doi.org/10.3168/jds.2019-17367.

BOHN, T. Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, v. 72, n. 7, p. 429-52, 2014. doi: https://doi.org/10.1111/nure.12114.

CAMPOS-VEGA, R.; LOARCA-PIÑA, G.; OOMAH, B. D. Minor components of pulses and their potential impact on human health. Food Research International, v. 43, n. 2, p. 461–482, 2010. doi: https://doi.org/10.1016/j.foodres.2009.09.004.

CARNEIRO, J. L.; CUNHA, M. G. DA; HADDAD, A.; FRANCISCHELLI NETO, M. Os efeitos dos estrogênios e fitoestrogênios na pele humana e seu uso tópico para prevenção do envelhecimento cutâneo: revisão da literatura. Surgical & Cosmetic Dermatology, v. 12, n. 1, p. 11-15, 2020. doi: https://doi.org/10.5935/scd1984-8773.20201211397.

CASTELLARO, A. M.; TONDA, A.; CEJAS, H. H.; FERREYRA, H.; CAPUTTO, B. L.; PUCCI, O. A.; GIL, G. A. Oxalate induces breast cancer. BMC Cancer, v. 15, n. 761, 2015. doi: https://doi.org/10.1186/s12885-015-1747-2.

CASTRO-ALBA, V.; LAZARTE, C. E.; BERGENSTÅHL, B.; GRANFELDT, Y. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Science & Nutrition, v. 7, n. 9, p. 2854-2865, 2019. doi: https://doi.org/ 10.1002/fsn3.1127.

CECCARELLI, I.; BIOLETTI, L.; PEPARINI, S.; SOLOMITA, E.; RICCI, C.; CASINI, I.; MICELI, E.; ALOISI, A. M. Estrogens and phytoestrogens in body functions. Neuroscience & Biobehavioral Reviews, v. 132, p. 648-663, 2022. doi: https://doi.org/10.1016/j.neubiorev.2021.12.007.

CHAI, W.; LIEBMAN, M. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis, v. 18, n. 7, p. 723-729, 2005. doi: https://doi.org/10.1016/j.jfca.2004.07.001.

CHAKRABORTY, D.; GUPTA, K.; BISWAS, S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomedicine & Pharmacotherapy, v. 113, 111039, 2021. doi: https://doi.org/10.1016/j.biopha.2020.111039.

CHAMP, M. M. Non-nutrient bioactive substances of pulses. The British Journal of Nutrition, v.88, n. 3, p. 307–319, 2002. doi: https://doi.org/10.1079/BJN2002721.

CHRZANOWSKA, A. M.; POLIWODA, A.; WIECZOREK, P.P. Surface molecular imprint silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples. Journal of Cromatography, v. 1392, p. 1-9, 2015. doi: https://doi.org/10.1016/j.chroma.2015.03.015.

CIUDAD-MULERO, M.; VEGA, E. N.; GARCÍA-HERRERA, P.; PEDROSA, M. M.; ARRIBAS, C.; BERRIOS, J. D. J.; CÁMARA, M.; FERNÁNDEZ-RUIZ, V.; MORALES, P. Extrusion cooking effect on carbohydrate fraction in novel gluten-free flours based on chickpea and rice. Molecules, v. 27, n. 3, 1143, 2022. doi: https://doi.org/10.3390/molecules27031143.

CUADRADO, C.; CABANILLAS, B.; PEDROSA, M. M.; VARELA, A.; GUILLAMÓN, E.; MUZQUIZ, M.; CRESPO, J. F.; RODRIGUEZ, J.; BURBANO, C. Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Molecular Nutrition & Food Research, v. 53, n. 11, p. 1462–1468, 2009. doi: https://doi.org/10.1002/mnfr.200800485.

DAMÁZIO, L. S.; DALEFFE, D.; MACARINI, K.; ARNS, K.; RODRIGUES, P. de F. Fitoestrogênios na saúde da mulher: menopausa. Revista Inova Saúde, v. 5, n. 1, p. 87-99, 2016. doi: https://doi.org/10.18616/is.v5i1.2329.

DAMODARAN, S.; PARKIN, K. L. Química de alimentos de Fennema. 5. ed. Porto Alegre: Artmed, 2019. 1112 p.

DAS, G.; SHARMA, A.; SARKAR, P. K. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, v. 2, n. 1, 100112, 2022. doi: https://doi.org/10.1016/j.afres.2022.100112.

DIOUF, A.; SARR, F.; SENE, B., NDIAYE, C.; FALL, S. M.; AYESSOU, N. C. Pathways for reducing anti-nutritional factors: prospects for Vigna unguiculata. Journal of Nutritional Health & Food Science, v. 7, n. 2, p. 1-10, 2019. doi: https://doi.org/10.15226/jnhfs.2019.001157.

DIXON, R. A.; FERREIRA, D. Molecules of Interest Genistein. Phytochemistry, v.60, n. 3, p.205-211, 2002. doi: https://doi.org/10.1016/S0031-9422(02)00116-4.

DOMÍNGUEZ-LÓPEZ, I.; YAGO-ARAGÓN, M.; SALAS-HUETOS, A.; TRESSERRA-RIMBAU, A.; HURTADO-BARROSO, S. Effects of dietary phytoestrogens on hormones throughout a human lifespan: a review. Nutrients, v. 12, n. 8, 2456, 2020. doi: https://doi.org/10.3390/nu12082456.

DONG, J.; MA, X.; FU, Z.; GUO, Y. Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Industrial Crops and Products, v. 34, n. 1, p. 1102-1110, 2011. doi: https://doi.org/10.1016/j.indcrop.2011.03.026.

DOS SANTOS, S. S.; SANTOS FILHO, S. J. de A.; ENJIU, L. M.; BAPTISTA, A. S.; SANTOS, E. de A.; MORAIS, M. P. de; GIANONI, R. L. da S.; SIMÃO, A. L.; TRIGO, E. L.; JÚNIOR, L. C. C. A Suplementação com proteína da soja para hipertrofia muscular. Revela, 22, p. 183-206, 2018. Acesso em: 02.08.22. Disponível em: <http://fals.com.br/novofals/revela/ed22/ED22_12.pdf>.

DRULYTE, D.; ORLIEN, V. The effect of processing on digestion of legume proteins. Foods, v. 8, n. 6, p. 224, 2019. doi: https://doi.org/10.3390/foods8060224.

DUAN, Z.; JIANG, L.; WANG, J.; YU, X.; WANG, T. Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food and Bioproducts Processing, v. 89, n. 4, p. 472-476, 2011. doi: https://doi.org/10.1016/j.fbp.2010.11.005.

DURAZZO, A.; LUCARINI, M.; CAMILLI, E.; MARCONI, S.; GABRIELLI, P.; LISCIANI, S.; GAMBELLI, L.; AGUZZI, A.; NOVELLINO, E.; SANTINI, A.; TURRINI, A.; MARLETTA, L. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules, v. 23, n. 12, 3251, 2018. doi: https://doi.org/10.3390/molecules23123251.

EICHELMANN, F.; SCHWINGSHACKL, L.; FEDIRKO, V.; ALEKSANDROVA, K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obesity Reviews, v. 17, n. 11, p. 1067-1079, 2016. doi: https://doi.org/10.1111/obr.12439.

EWU, M. N.; ADEBOLA, P.O.; AFOLAYAN, A. J. Comparative assessment of the nutritional value of commercially available cocoyam and potato tubers in south africa. Journal of Food Quality, v. 33, p. 461-476, 2010. doi: https://doi.org/10.1111/j.1745-4557.2010.00325.x

FELKER, P.; BUNCH, R.; LEUNG, A. M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutrition Reviews, v. 74, n. 4, p. 248-58, 2016. doi: https://doi.org/10.1093/nutrit/nuv110.

FERREIRA, I. C. F. R.; BARROS, L. Advances in food and nutrition research: functional food ingredients from plants. 1. ed. Portugal: Academic Press, 2019. 443 p. Acesso em: 23 ago. 2022. Disponível em: <https://www.elsevier.com/books/functional-food-ingredients-from-plants/ferreira/978-0-12-816567-6>.

GEMEDE, H. F.; RATTA, N. Antinutritional factors in plant foods: potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences, v. 3, n. 4, p. 284–289, 2014. Acesso em: 23 ago. 2022. doi: https://doi.org/10.11648/j.ijnfs.20140304.18>.

GILANI, G. S.; COCKELL, K. A.; SEPEHR, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International, v. 88, n. 3, p. 967-87, 2005. Acesso em: 06.08.22. Disponível em:< https://pubmed.ncbi.nlm.nih.gov/16001874/>.

GREINER, R.; KONIETZNY, U. Phytase for food application. Food Technology and Biotechnology, n. 44, n. 2, p. 125-140, 2006. doi: https://doi.org/109831.

GUZMÁN-MALDONADO, S.; ACOSTA-GALLEGOS, J.; PAREDES-LOPEZ, O. Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L). Journal of the Science of Food and Agriculture, v. 80, n. 13, p. 1874-1881, 2000. doi: https://doi.org/10.1002/1097-0010(200010)80:13<1874::AID-JSFA722>3.0.CO;2-X.

HAMZA, R. G.; AFIFI, S.; ABDEL-GHAFFAR, A. R. B.; BORAI, I. H. Effect of gamma-irradiation or/and extrusion on the nutritional value of soy flour. Biochemistry & An-alytical Biochemistry, v. 1, n. 6, Article 1000118, 2012. doi: https://doi.org/10.4172/2161-1009.1000118.

HASSEN, H. Y.; BEYENE, M.; ALI, J. H. Dietary pattern and its association with iodine deficiency among school children in southwest Ethiopia; A cross-sectional study. PLoS One, v. 14, n. 8, e0221106, 2019. doi: https://doi.org/10.1371/journal.pone.0221106.

HIGASHIJIMA, N. S.; LUCCA, A.; REBIZZ, L. R. H.; REBIZZI, L. M. H. Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, Campinas, SP, v. 27, p. e020013, 2019. doi: https://doi.org/10.20396/san.v27i0.8653587.

HUISMAN, J.; VAN DER POEL, A. F. B.; LIENER, I. E. Recent advances of research in antinutritional factors in legume seeds. Proceedings of the First International Workshop on Antinutritional Factors (ANF) in Legume seeds. Wageningen: Pudoc, 1989. 389 p. Acesso em: 26.09.2023. Disponível em: <https://edepot.wur.nl/313366>.

HÖNOW, R.; HESSE, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chemistry, v. 78, n. 4, p. 511–521, 2002. doi: https://doi.org/10.1016/S0308-8146(02)00212-1.

HU, D.; HUANG, J.; WANG, Y.; ZHANG, D.; QU, Y Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke, v. 45, n. 6, p. 1613–1619, 2014. doi: https://doi.org/10.1161/STROKEAHA.114.004836.

IHSANULLAH, I.; RASHID, A. Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries Food Control, 72, p. 345-359, 2017. doi: https://doi.org/10.1016/j.foodcont.2016.03.011.

JANSMAN, A. J. M.; HILL, G. D.; HUISMAN, J.; VAN DER POEL, A. F. B. Recent advances of research in antinutritional factors in legume seeds and rapeseed. Proceedings of the 3rd International ANF Workshop. Wageningen: Wageningen Pers, 1998. 476 p. Acesso em 23.08.22. Disponível em: < https://research.wur.nl/en/publications/recent-advances-of-research-in-antinutritional-factors-in-legume->.

JITHENDER, B.; UPENDAR, K.; NICKHIL, C.; RATHOD, P J. Nutritional and anti-nutritional factors present in oil seeds: An overview. International Journal of Chemical Studies, v. 7, n. 6, p. 1159-1165, 2019. Acesso em: 02.08.22. Disponível em: <https://www.chemijournal.com/archives/?year=2019&vol=7&issue=6&ArticleId=7726&si=false>.

KAISANGSRI, N.; KOWALSKI, R. J.; WIJESEKARA, I.; KERDCHOECHUEN, O.; LAOHAKUNJIT, N.; GANJYAL, G. M. Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT - Food Science and Technology, v. 68, p. 391-399, 2016. doi: https://doi.org/10.1016/j.lwt.2015.12.016.

KHATTAK, A. B.; ZEB, A.; BIBI, N.; KHALIL, S. A.; KHATTAK, M. S. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chemistry, v. 104, n. 3, p. 1074-1079, 2007. doi: https://doi.org/10.1016/j.foodchem.2007.01.022.

KIM, Y.; JE, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Archives of Cardiovascular Diseases, v. 109, n. 1, p. 39-54, 2016. doi: https://doi.org/10.1016/j.acvd.2015.09.005.

KNIGHT, B. A.; SHIELDS, B. M.; HE, X.; PEARCE, E. N.; BRAVERMAN, L. E.; STURLEY, R.; VAIDYA, B. Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Research, v. 11, n. 9, 2018. doi: https://doi.org/10.1186/s13044-018-0053-x.

KRIS-ETHERTON, P. M.; HECKER, K. D.; BONANOME, A.; COVAL, S. M.; BINKOSKI, A. E; HILPERT, K. F.; GRIEL, A. E.; ETHERTON, T. D. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, v. 113, Suppl 9B:71S-88S, 2002. doi: https://doi.org/10.1016/S0002-9343(01)00995-0.

KUMAR, V.; SINHA, A. K.; MAKKAR, H. P. S.; KLAUS, B. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, v. 120, n. 4, p. 945-959, 2010. doi: https://doi.org/10.1016/j.foodchem.2009.11.052.

LESJAK, M.; SRAI, S. K. S. Role of dietary flavonoids in iron homeostasis. Pharmaceuticals (Basel), v. 12, n. 3,119, 2019. doi: https://doi.org/10.3390/ph12030119.

LI, B.; LI, F.; WANG, L.; ZHANG, D. Fruit and vegetables consumption and risk of hypertension: A meta-analysis The Journal of Clinical Hypertension., v.18, n. 5, p. 468–476, 2016. doi: https://doi.org/10.1111/jch.12777.

LI, C.; KOWALSKI, R. J.; LI, L.; GANJYAL, G. M. Extrusion Expansion Characteristics of Samples of Select Varieties of Whole Yellow and Green Dry Pea Flours. Cereal Chemistry, v. 94, n. 3, p. 385-391, 2017. doi: https://doi.org/10.1094/CCHEM-04-16-0079-R.

LI, M.; FAN, Y.; ZHANG, X.; HOU, W.; TANG, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open, v. 4, n.11, e005497, 2014. doi: 10.1136/bmjopen-2014-005497.

LO, D.; WANG, H. W. H.; WU, W. W. W.; YANG, R. Y. Y. R. Anti-nutrient components and their concentrations in edible parts in vegetable families. CABI Reviews, v. 13, n. 15, p. 1-30, 2018. doi: https://doi.org/10.1079/PAVSNNR20181301.

LOPES, C. de O.; DESSIMONI, G. V.; DA SILVA, M. C.; VIEIRA, G.; PINTO, N. A. V. S. Aproveitamento, composição nutricional e antinutricional da farinha de quinoa (Chenopodium Quinos). Alimentos e Nutrição, v. 20, n. 4, p. 669-675, 2009. Acesso em: 02.08.22. Disponível em: <http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/view/1265/874>.

LÓPEZ-MORENO, M.; GARCÉS-RIMÓN, M.; MIGUEL, M. Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? Journal of Functional Foods, v. 89, 104938, 2022. doi: https://doi.org/10.1016/j.jff.2022.104938.

MACHADO, T. S.; SABÓIA, R. S.; ROCHA, M. S.; BARROQUEIRO, A. T. S. Fitoestrógenos no climatério: proposição de um cardápio rico em fitoestrógenos para mulheres climatéricas. Estudos Interdisciplinares sobre o Envelhecimento, v. 26, n. 2, 2021. doi: https://doi.org/10.22456/2316-2171.102040.

MAHAN, L. K; RAYMOND, J. L. Krause alimentos, nutrição e dietoterapia dietoterapia. 14. ed. Rio de Janeiro: Elsevier Editora, 2018. Acesso em: 02.08.22. Disponível em: <https://eu-ireland-custom-media-prod.s3-eu-west-1.amazonaws.com/Brasil/Downloads/02-10/esample%20-%20Mahan-min.pdf>.

MARADINI FILHO, A. M. Caracterização físico-química, nutricional e fatores antinutricionais de quinoa da variedade brasileira BRS Piabiru. 2014. 202 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Universidade Federal de Viçosa, Viçosa. 2014. Acesso em: 02.08.22. Disponível em: <http://www.locus.ufv.br/handle/123456789/6405>.

MASHIANE, P.; SHOKO, T.; MANHIVI, V.; SLABBERT, R.; SULTANBAWA, Y.; SIVAKUMAR, D. A. Comparison of Bioactive Metabolites, Antinutrients, and Bioactivities of African Pumpkin Leaves (Momordica balsamina L.) Cooked by Different Culinary Techniques. Molecules, v. 27, n. 6, 1901, 2022. doi: https://doi.org/10.3390/molecules27061901.

MASSEY, L. K. Food oxalate: factors affecting measurement, biological variation, and bioavailability. Journal of the American Dietetic Association, v. 107, n. 7, p. 1191-1194, 2007. doi: https://doi.org/10.1016/j.jada.2007.04.007.

MAZUR, C. E. Efeito do Feijão Branco (Phaseolus vulgaris L.) na perda de peso. RBNE - Revista Brasileira de Nutrição Esportiva, v. 8, n. 48, p. 404-411, 2014. Acesso em: 02.08.22. Disponível em: <http://www.rbne.com.br/index.php/rbne/article/view/482>.

MEAGHER, L. P.; BEECHER, G. R. Assessment of data on the lignan content of foods. Journal of Food Composition and Analysis, v. 13, n. 6, p. 935-947, 2000. doi: https://doi.org/10.1006/jfca.2000.0932.

MELINI, V.; MELINI, F.; ACQUISTUCCI, R. Phenolic compounds and bioaccessibility thereof in functional pasta. Antioxidants, v. 9, n. 4, 343, 2020. doi: https://doi.org/10.3390/antiox9040343.

MOHAMED, K. R.; ABOU-ARAB, E. A.; GIBRIEL, A. Y.; RASMY, N. M. H.; ABU-SALEM, F. M. Effect of legume processing treatments individually or in combination on their phytic acid content. African Journal of Food Science and Technology, v. 2, n. 2, p. 36-46, 2011. Acesso em: 12.08.22. Disponível em: <http://www.interesjournals.org/AJFST>.

MOREIRA, F. G.; IERVOLINO, R. L.; DALL’ORTO, S. Z.; BENEVENTI, A. C. A.; OLIVEIRA FILHO, J. L. de; GÓIS, A. F. T. de. Star fruit intoxication in a chronic renal failure patient: case report. Revista Brasileira de Terapia Intensiva, v. 22, n. 4, p. 395-398, 2010. doi: https://doi.org/10.1590/S0103-507X2010000400013.

MUNHOZ, C. L.; GUIMARÃES, R. de C. A.; NOZAKI, V. T.; SANJINEZ-ARGANDOÑA, E. J.; MACEDO, M. L. R.Composição química e de fatores antinutricionais de frutos de bocaiuva. Ambiência Guarapuava (PR), v.14, n.1, p. 212 – 224, 2018. doi: https://doi.org/10.5935/ambiencia.2018.15.01.

MURPHY, P. A.; HENDRICH, S. Phytoestrogens in foods. Advances in Food and Nutrition Research, v. 44, p. 195-N4, 2022. doi: https://doi.org/10.1016/S1043-4526(02)44005-3.

MUZQUIZ, M.; VARELA, A.; BURBANO, C.; CUADRADO, C.; GUILLAMÓN, E.; PEDROSA, M. M. Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochemistry Reviews, v. 11, p. 227–244, 2012. doi: https://doi.org/10.1007/s11101-012-9233-9.

MUZQUIZ, M.; WOOD, J. A. Antinutritional factors. CABI Books: CABI International, 2007. doi: https://doi.org/10.1079/9781845932138.006.

NATH, H.; SAMTIYA, M; DHEWA, T. Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition & Metabolism, v. 28, 2022. doi: https://doi.org/10.1016/j.hnm.2022.200147.

OLAYA, B.; MONETA, M. V.; LARA, E.; MIRET, M.; MARTÍN-MARÍA, N.; MORENO-AGOSTINO, D.; AYUSO-MATEOS, J. L.; ABDULJABBAR, A. S.; HARO, J. M. Fruit and vegetable consumption and potential moderators associated with all-cause mortality in a representative sample of spanish older adults. Nutrients, v. 11, n. 8,1794, 2019. doi: https://doi.org/10.3390/nu11081794.

PASQUALONE, A.; COSTANTINI, M.; COLDEA, T. E.; SUMMO, C. Use of legumes in extrusion cooking: A review. Foods, v. 9, n. 7, p. 958, 2020. doi: https://doi.org/10.3390/foods9070958.

PEDROSA, M. M.; GUILLAMÓN, E.; ARRIBAS, C. Autoclaved and extruded legumes as a source of bioactive phytochemicals: a review. Foods, v. 10, n. 2, 379, 2021. doi: https://doi.org/10.3390/foods10020379.

PETROSKI, W.; MINICH, D. M. Is there such a thing as "anti-nutrients"? a narrative review of perceived problematic plant compounds. Nutrients, v. 12, n. 10, 2929, 2020. doi: https://doi.org/10.3390/nu12102929.

PIYARATNE, M.; ATAPATTU, N.; MENDIS, A; AMARASINGHE, A. Effects of balancing rice bran based diets for up to four amino acids on growth performance of broilers. Tropical Agricultural Research and Extension, v. 12, n. 2, p.57–61, 2011. doi: http://doi.org/10.4038/tare.v12i2.2790.

PRIETO, M. A.; LÓPEZ, C. J.; SIMAL-GANDARA, J. Chapter Six - Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Advances in Food and Nutrition Research, v. 90, p. 305-350, 2019. doi: https://doi.org/10.1016/bs.afnr.2019.02.008.

QUEIROZ, E. de R.; ABREU, C. M. P. de; ROCHA, D. A.; SIMÃO, A. A.; BASTOS, V. A. A.; BOTELHO, L. N. S.; BRAGA, M. A. Anti-nutritional compounds in fresh and dried lychee fractions (Litchi chinensis Sonn.). African Journal Agricultural Research, v. 10, n. 6, p. 499-504, 2015. doi: https://doi.org/10.5897/AJAR2014.8750.

RAHATE, K. A.; MADHUMITA, M.; PRABHAKAR, P. K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT – Food and Science Technology, v. 138, 110796, 2021. doi: https://doi.org/10.1016/j.lwt.2020.110796.

RATHOD, R. P.; ANNAPURE, U. S. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT - Food Science and Technology, v. 66, 114–123, 2016. doi: https://doi.org/10.1016/j.lwt.2015.10.028.

RAVINDRAN, R.; JAISWAL, A. K. Wholesomeness and safety aspects of irradiated foods. Food Chemistry, v. 285, pp. 363-368, 2019. doi: https://doi.org/10.1016/j.foodchem.2019.02.002.

REDONDO, D.; VENTURINI, M. E.; ORIA, R.; ARIAS, E. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity. Food Chemistry, v. 197, p. 603-610, 2016. doi: https://doi.org/10.1016/j.foodchem.2015.11.009.

REDOVNIKOVIĆ, I. R.; GLIVETIĆ, T.; DELONGA, K.; VORKAPIĆ-FURAČ, J. Glucosinolates and their potential role in plant. Periodicum biologorum, v. 110, n. 4, p. 297-309, 2008. Disponível em: <https://hrcak.srce.hr/35929>.

SAHU, P.; TRIPATHY, B.; ROUT, S. Significance of anti-nutritional compounds in vegetable. In: PAWAR, N. B. (ed). Agriculture and Rural Development: Spatial Issues, Challenges and Approaches, p. 98-109. Pune: Amitsons Digital Copier, 2020. Disponível em: < http://jkpublications.com/wp-content/uploads/2020/08/1.-Dr.-N-B-Pawar-Sir-2.pdf>.

SAMTIYA, M.; ALUKO, R. E.; DHEWA, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, v. 2, n. 6, 2021. doi: https://doi.org/10.1186/s43014-020-0020-5.

SANTOS, C. D. Avaliação das melhores condições de secagem de grãos de soja visando à manutenção do teor de proteínas. 2013. 88 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2013. Acesso em: 02.08.22. Disponível em: <http://hdl.handle.net/10183/79833>.

SANTOS, C. M. Caracterização e utilização de subprodutos do mamão (Carica papaya L.). 2015. 150 f. Tese (Doutorado em Agroquímica) - Universidade Federal de Lavras, Lavras, 2015. Acesso em: 02.08.22. Disponível em: <http://repositorio.ufla.br/jspui/handle/1/10284>.

SANTOS, M. A. T. dos. Efeito do cozimento sobre alguns fatores antinutricionais em folhas de brócoli, couve-flor e couve. Ciência e Agrotecnogia, v. 30, n. 2, p. 294-301, 2006. doi: https://doi.org/10.1590/S1413-70542006000200015.

SATO, V.S.; JORGE, J. A.; OLIVEIRA, W. P.; SOUZA, C. R. F.; GUIMARÃES, L. H. S. Phytase Production by Rhizopus microsporus var. microsporus Biofilm: Characterization of Enzymatic Activity After Spray Drying in Presence of Carbohydrates and Nonconventional Adjuvants. Journal Microbiology and Biotechnology, v. 24, p. 177-187, 2014. doi: https://doi.org/10.4014/jmb.1308.08087.

SCHLEMMER, U.; FRØLICH, W.; PRIETO, R. M.; GRASES, F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, v. 53, n. 2, S330-75, 2009. doi: https://doi.org/10.1002/mnfr.200900099.

SEKIKAWA, A.; IHARA, M.; LOPEZ, O.; KAKUTA, C.; LOPRESTI, B.; HIGASHIYAMA, A.; AIZENSTEIN, H.; CHANG, Y. F.; MATHIS, C.; MIYAMOTO, Y.; KULLER, L.; CUI, C. Effect of s-equol and soy isoflavones on heart and brain. Current Cardiology Reviews, v. 15, n. 2, p. 114-135, 2019. doi: https://doi.org/ 10.2174/1573403X15666181205104717.

SHIMELIS, E. A; RAKSHIT, S. K. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry, v. 103, n. 1, p. 161-172, 2007. doi: https://doi.org/10.1016/j.foodchem.2006.08.005.

SINGH, B.; SINGH, J. P.; SHEVKANI, K.; SINGH, N.; KAUR, A. Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, v. 54, p. 858-870, 2017. doi: https://doi.org/10.1007/s13197-016-2391-9.

SINGH, R. S. G.; NEGI, P. S.; RADHA, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. Journal of Functional Foods, v. 5, n. 4, p. 1883-1891, 2013. doi: https://doi.org/10.1016/j.jff.2013.09.009.

SINHA, K.; KHARE, V. Review on: Antinutritional factors in vegetable crops. Pharma Innovation, v. 12, n. 6, p. 353-358, 2017. Acesso em: 12.06.22. Disponível em: <https://www.thepharmajournal.com/archives/?year=2017&vol=6&issue=12&ArticleId=1564>.

SIROTKIN, A. V.; HARRATH, A. H. Phytoestrogens and their effects. European journal of pharmacology, v. 741, p. 230-236, 2014. doi: https://doi.org/10.1016/j.ejphar.2014.07.057.

SLYWITCH, E. Guia alimentar de dietas vegetarianas para adultos. São Paulo: Sociedade Vegetariana Brasileira, Departamento de Medicina e Nutrição, 2012.

SOCAS-RODRÍGUEZ, B.; HERNÁNDEZ-BORGES, J.; HERRERA-HERRERA, A. V.;

RODRÍGUEZ-DELGADO, M. A. Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, v. 410, n. 7, p. 2031-2042, 2018. doi: https://doi.org/10.1007/s00216-018-0882-4.

SOUZA, C. G. DE; MOURA, A. K. B. DE; SILVA, J. N. P. DE; SOARES, K. O.; JOELMA VASCONCELOS CELESTINO DA SILVA, J. V. C. DA; VASCONCELOS, P. C. Fatores anti-nutricionais de importância na nutrição animal: Composição e função dos compostos secundários. Pubvet, v.13, n. 5, a327, p.1-19, 2019. doi: https://doi.org/10.31533/pubvet.v13n5a327.1-19.

STANGARLIN, J. R.; KUHN, O. J.; TOLEDO, M. V.; PORTZ, R. L.; F., K. R.; PASCHOLATI, S. F. A defesa vegetal contra fitopatógenos. Scientia Agraria Paranaensis, v. 10, n. 1, p.18-46, 2011. doi: https://doi.org/10.18188/sap.v10i1.5268.

TANWAR, A. K.; DHIMAN, N.; KUMAR, A.; JAITAK, V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. European Journal of Medicinal Chemistry, v. 213, 113037, 2021. doi: https://doi.org/10.1016/j.ejmech.2020.113037.

TOH, D. W. K.; KOH, E. S.; KIM, J. E. Incorporating healthy dietary changes in addition to an increase in fruit and vegetable intake further improves the status of cardiovascular disease risk factors: A systematic review, meta-regression, and meta-analysis of randomized controlled trials. Nutrition Reviews, v. 78, n. 7, p. 532-545, 2020. doi: https://doi.org/10.1093/nutrit/nuz104.

TOUMPANAKIS, A.; TURNBULL, T.; ALBA-BARBA, I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Research and Care, v. 6, e000534, 2018. doi: https://drc.bmj.com/10.1136/bmjdrc-2018-000534.

THAKUR, D.; KUMAR, Y.; KUMAR, A.; SINGH, P. K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review. Wireless Personal Communications, v. 107, p. 471–512, 2019. doi: https://doi.org/10.1007/s11277-019-06285-2.

TRAN, E.; DALE H. F.; JENSEN. C.; LIED, G. A. Effects of plant-based diets on weight status: a systematic review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, v. 13, p. 3433-3448, 2020. doi: https://doi.org/10.2147/DMSO.S272802.

VARITH, J.; DIJKANARUKKUL, P.; ACHARIYAVIRIYA, A.; ACHARIYAVIRIYA, S. Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, v. 81, n. 2, p. 459-468, 2007. doi: https://doi.org/10.1016/j.jfoodeng.2006.11.023.

VEGA-GÁLVEZ, A.; MIRANDA, M.; VERGARA, J.; URIBE, E.; PUENTE, L.; MARTÍNEZ, E. A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, v. 90, n. 15, p. 2541-2547, 2010. doi: https://doi.org/10.1002/jsfa.4158.

World Health Organization & Food and Agriculture Organization of the United Nations‎. Evaluation of certain food additives and contaminants: forty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. Rome, Italy: World Health Organization, 1995. 54 p. Acesso em: 08.06.22. Disponível em: <https://apps.who.int/iris/handle/10665/37246>.

WU, H.; GU, J.; AMRIT, B. K.; NAWAZ, M. A.; BARROW, C. J.; DUNSHEA, F. R.; SULERIA, H. A. R. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Bioscience, v. 46, 1011373, 2022. doi: https://doi.org/10.1016/j.fbio.2021.101373.

XU, B.; CHANG, S. K. C. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States. Journal of Agricultural and Food Chemistry, v. 58, n. 3, p. 1509-1517, 2010. doi: https://doi.org/10.1021/jf903532y.

YAGASAKI, K. Chapter 26 - Phytochemicals, Their Intestinal Metabolites, and Skeletal Muscle Function: Nutrition and Skeletal Muscle. Stéphane Walrand: Academic Press, 2019. p. 421-438. doi: https://doi.org/10.1016/B978-0-12-810422-4.00025-7.

YOKOYAMA, Y.; LEVIN, S. M.; BARNARD, N. D. Association between plant-based diets and plasma lipids: a systematic review and meta-analysis. Nutrition Reviews, v. 75, n. 9, p. 683-698, 2017. doi: https://doi.org/10.1093/nutrit/nux030.

ZAMIN, L. L.; CIMAROSTI, H. I.; NASSIF, M. C.; SALBEGO, C. G. fitoestrógenos: moléculas de plantas trazendo benefícios para os seres humanos. Infarma, v. 16, n. 3-4, p. 75-78, 2004.

ZANG, J.; LI, D.; PIAO, X.; TANG, S. Effects of soybean agglutinin on body composition and organ weights in rats. Archives of Animal Nutrition, v. 60, n. 3, p, 245-253, 2006. doi: https://doi.org/10.1080/17450390600679082.

ZHANG, J.; SONG, G.; MEI, Y.; LI, R., ZHANG, H.; LIU, Y. Present status on removal of raffinose family oligosaccharides – a review. Czech Journal of Food Sciences, v. 37, n. 3, p. 141–154, 2019. doi: https://doi.org/10.17221/472/2016-CJFS.

ZHONG, Y.; WANG, Z.; ZHAO, Y. Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans. Journal of Food Science, v. 80, n. 12, C2732-9, 2015. doi: https://doi.org/10.1111/1750-3841.13131

Downloads

Publicado

2023-10-08

Como Citar

DE OLIVEIRA PEREIRA, F.; RODRIGUES MARTINS, I.; DA CONCEIÇÃO AMARAL RIBEIRO, S.; SUZUKI, J. C.; SARKIS PEIXOTO JOELE, M. R. Métodos para redução e inativação de fatores antinutricionais em alimentos de origem vegetal: uma revisão. Nutrivisa Revista de Nutrição e Vigilância em Saúde, Fortaleza, v. 10, n. 1, p. E11010, 2023. DOI: 10.59171/nutrivisa-2023v10e11010. Disponível em: https://revistas.uece.br/index.php/nutrivisa/article/view/11010. Acesso em: 1 jan. 2025.

Edição

Seção

Artigos de revisão