v. 35 n. 3 (2025): Revista Ciência Animal
Artigos de Revisão

MORFOFISIOLOGIA OVARIANA COMPARADA ENTRE MAMÍFEROS E PEIXES TELEÓSTEOS

João Eudes Farias CAVALCANTE FILHO
Programa de Pós-Graduação em Ciências Veterinárias (UECE)
Fernanda Vitória Almeida MAGALHÃES
Pós-Graduação em Ciências Veterinária (UECE)
Israel Levi Nascimento SILVA
Faculdade de Veterinária da Universidade Estadual do Ceará (UECE)
Valdevane Rocha ARAÚJO
Curso de Ciências Biológicas da Universidade Federal do Delta do Parnaíba
Carminda Sandra Brito SALMITO-VANDERLEY
Pós-Graduação em Ciências Veterinária (UECE)

Publicado 2025-10-06

Palavras-chave

  • Foliculogênese,
  • oogênese,
  • modelos animais,
  • vitelogênese

Como Citar

CAVALCANTE FILHO, J. E. F.; MAGALHÃES, F. V. A.; SILVA, I. L. N.; ARAÚJO, V. R.; SALMITO-VANDERLEY, C. S. B. MORFOFISIOLOGIA OVARIANA COMPARADA ENTRE MAMÍFEROS E PEIXES TELEÓSTEOS. Ciência Animal, [S. l.], v. 35, n. 3, p. 137–153, 2025. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/16365. Acesso em: 9 jan. 2026.

Resumo

A experimentação animal é fundamental para a evolução dos conhecimentos científicos a respeito da reprodução
das espécies. Mamíferos, como ratos e camundongos, são amplamente utilizados e sua contribuição é bem
estabelecida. Entretanto, modelos mamíferos exigem um custo elevado de manutenção e maior discrepância em
avaliações em grupo quando comparados a algumas espécies de peixes. Neste sentido, há um aumento na utilização
de modelos alternativos, como é o caso do zebrafish (Danio rerio) e medaka (Oryzias latipes). A utilização destas
espécies de peixes teleósteos em substituição ao modelo mamífero tem causado questionamentos acerca da
viabilidade da substituição, considerando a distinção entre esses grupos de vertebrados, especialmente a respeito
da morfologia e fisiologia reprodutiva de tais grupos (mamíferos e peixes). Por esta razão, estudos referentes a
semelhança entre a biologia reprodutiva dessas espécies com o intuito de comparar ambos os modelos, se fazem
de extrema importância no âmbito da reprodução humana e animal. Neste contexto, a presente revisão buscará
caracterizar as estruturas anatômicas e fisiológicas dos aparelhos reprodutivos das fêmeas de mamíferos e peixes,
com foco para o epitélio germinativo, os processos de oogênese e foliculogênese, incluindo os fatores envolvidos
no desenvolvimento folicular e formação da zona pelúcida, bem como na maturação oocitária e ovulação

Downloads

Não há dados estatísticos.

Referências

  1. ABASCAL, F.J.; MEDINA, A. Ultrastructure of oogenesis in the Bluefin Tuna, Thunnus Thynnus Journal of Morphology, v.264, n.2, p.149-160, 2005.
  2. ACOSTA, T.J.; MIYAMOTO, A. Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Animal Reproduction Science, v.82/83, p.127-140, 2004.
  3. https://doi.org/10.1016/j.anireprosci.2004.04.022. ADHIKARI, D.; LIU, K. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Molecular and Cellular Endocrinology, v.382, n.1, p.480-487, 2014.
  4. AMSTERDAM, A.; SASSON, R.; KEREN-TAL, I.; AHARONI, D.; DANTES, A.; RIMON, E.; LAND, A.; COHEN, T.; DOR, Y.; HIRSH, L. Alternative pathways of ovarian apoptosis: death for life. Biochemical Pharmacology, v.66, p.1355-1362, 2003.
  5. ARLOTTO, T.; SCHWARTZ, J.L.; FIRST, N.L.; LEIBFRIED, M.L. Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes. Theriogenology, v.45, n.5, p.943-956, 1996.
  6. BALDISSEROTO, B. Fisiologia de peixes aplicada à psicultura. 3. ed., Santa Maria: Ed. da UFSM, 2018.
  7. BENJAMIM, L.A. Caracterização dos ovários e do desenvolvimento ovocitário, e da recuperação ovariana pós-parto do Platy (Xiphophorus maculatus) (Teleostei, Poeciliidae) em condições laboratoriais controladas e sob ação do hormônio de crescimento, 2004. 157p. (Tese de Doutorado em Biologia Celular e Estrutural). Universidade Estadual de Campinas (UNICAMP), Campinas/SP, 2004.
  8. BHANDARI, R.K.; KOMURO, H.; NAKAMURA, S. Molecular mechanisms underlying temperature-dependent sex determination in fish. International Journal of Molecular Sciences, v.20, n.19, p.4896, 2019.
  9. BLANCO, M.R.; DEMYDA, S.; MORENO MILLÁN, M.; GENERO, E. Developmental competence of in vivo and in vitro matured oocytes: A review. Biotechnology and Molecular Biology Review, v.6, n.7, p.155-165, 2011.
  10. REVINI-GANDOLFI, T.; GANDOLFI, F. The maternal legacy to the embryo: Cytoplasmic components and their effects on early development. Theriogenology, v.55, n.6, p.1255–1276, 2001.
  11. BROMLEY, P.J.; RAVIER, C.; WITTHAMES, P.R. The influence of feeding regime on sexual maturation, fecundity and atresia in first-time spawning turbot. Journal of Fish Biology, v.56, n.2, p.264-278, 2000.
  12. CANEDO, A.; SAIKI, P.; SANTOS, A.L.; CARNEIRO, K.S.; SOUZA, A.M.; QUALHATO, G.; BRITO, R.S.; MELO-ANDRADE, F.; ROCHA, T.L. O peixe zebra (Danio rerio) encontra bioética: os princípios éticos dos 10Rs na pesquisa. Ciência Animal Brasileira, v.23, n.1, p.1- 13, 2022.
  13. CONNAUGHTON, M.A.; AIDA, K. Female reproductive system, fish. In: KROBIL, E.; NEILL, J.D. (ed.). Encyclopedia of Reproduction. 1. ed., San Diego, Academic Press, 1998. p.193-205.
  14. CONNOLLY, M.H.; DUTKOSKY, R.M.; HEAH, T.P.; SAYLER, G.S.; HENRY, T.B. Temporal dynamics of oocyte growth and vitellogenin gene expression in zebrafish (Danio rerio). Zebrafish, Larchmont, v.11, n.2, p.107-114, 2014.
  15. DRAPER, B.W.; MCCALLUM, C.M.; MOENS, C.B. Nanos1 is required to maintain oocyte production in adult zebrafish. Developmental Biology, New York, v.305, n.2, p.589-598, 2007.
  16. FAIR, T. Follicular oocyte growth and acquisition of developmental competence. Animal Reproduction Science, v.78, n.3/4, p.203-216, 2003.
  17. FAIR, T.; HULSHOF, S.C.; HYTTEL, P.; GREVE, T.; BOLAND, M. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Molecular Reproduction and Development, v.46, n.2, p.208-215, 1997.
  18. FRANCOLINI, M.; LORA LAMIA, C.; BONSIGNORIO, C.; COTELLI, F. Oocyte development and egg envelope formation in Oreochromis niloticus, a mouth-brooding cichlid fish. Journal of Submicroscopic Cytology and Pathology, v.35, n.1, p.49-60, 2003.
  19. FYHN, H.J.; FINN, R.N.; REITH, M.; NORBERG, B. Yolk protein hydrolysis and oocyte free amino acids as a key features in the adaptative evolution of teleost fishes to seawater. Sarsia, v.84, n.5/6, p.451-456, 1999.
  20. GILCHRIST, R.B.; RITTER, L.J.; ARMSTRONG, D.T. Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, v.82/83, p.431-446,2004.
  21. GONÇALVES, P.B.; FIGUEIREDO, J.R.; FREITAS, V.J.F. Biotécnicas Aplicadas à Reprodução Animal. 1. ed., São Paulo: Roca; 2008.
  22. GRIER, H.J. Ovarian germinal epithelium and folliculogenesis in the Common Snook, Centropomus undecimalis (Teleostei: Centropomidae). Journal of Morphology, v.243, n.3, p.265-281, 2000.
  23. GRIER, H.J.; LO NOSTRO, F. The germinal epithelium in fish gonads: the unifying concept. In: NORBERG, B.; KJESBU, O.S.; TARANGER, G.L.; ANDERSSON, E.; STEFANSSON, S.O. In: Proceedings of the 6 th International Symposium on the Reproductive Physiology of Fish. Norway: University of Bergen. p.233-236, 2000.
  24. GUIMARÃES, A.C.D.; QUAGIO-GRASSIOTTO, I. Ultrastructural aspects of oogenesis and oocute primary growth in serrasalmus spilopleura (Teleostei, Characiformes, Serrasalminae). Tissue & Cell, v.33, n.3, p.241-248, 2001.
  25. GURAYA, S.S. The Cell and Molecular Biology of Fish Oogenesis. 1. ed., Basel: Ed. Sauer, H.W. Karger,1986.
  26. GURAYA, S.S. Recent advances in the functional morphology of follicular wall, eggsurface components, and micropyle in the fish ovary. In: MUNSHI, J.S.D.; DUTTA, H.M (Ed.) Fish morphology – horizon of new research, 1. ed., Rotterdam: Balkema, 1996. p.114-144.
  27. HELFMAN, G.S.; COLLETE, B.B.; FACEY, D. Teleosts at last. In: HELFMAN, G.S; COLLETTE, B.B; FACEY, D.E; BOWEN, B.W. Bony-totongues through Anglerfishes. The diversity of fishes. 2. ed., Blackwell, Massachusetts, 2000. p.221-243. HYTTEL, P.; FAIR, T.; CALLESEN, H.; GREVEm T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology, v.47, n.1, p.23-32, 1997.
  28. HUNTRISS, J.; GOSDEN, R.; HINKINS, M.; OLIVER, B.; MILLER, D.; RUTHERFORD, A.J. Isolation, characterization and expression of the human factor in the Germline alpha (FIGLA) gene in ovarian follicles and oocytes. Molecular Human Reproduction, v.8, n.12, p.1087-1095, 2002.
  29. KALUEFF, A.V.; WHEATON, M.; MURPHY, D.L. What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behavioural Brain Research, Amsterdam, v.179, n.1, p.1-18, 2007.
  30. KHAN, I.A.; THOMAS, P. Ovarian cycle, teleost fish. In: KROBIL, E.; NEILL, J.D. (ed.). Encyclopedia of Reproduction. 1. ed., San Diego, Academic Press, vol.3, 1999. p.552-564.
  31. KIMMEL, C.B.; BALLARD, W.W.; KIMMEL, S.R.; ULLMANN, B.; SCHILLING, T.F. Stages of Embryonic Development of the zebrafish. Developmental Dynamics, v.203, n.3, p.253-310, 1995.
  32. KUDO, S.; YAZAWA, S. Biding of antibiotics to glycoproteins of vitelline and fertilization envelopes of cherry salmon eggs. Histochemical Journal, v.29, n.8, p.607-616, 1997.
  33. LANGELAND, J.A.; KIMMEL, C.B. Fishes In: GILBERT, S.F.; RAUNIO, A.M. (ed. Embryology: construting the organism. 1. ed., Sunderland: Sinauer Associates, cap.19, 1997. p.383-407.
  34. LESSMAN, C.A. Oogenesis, in nonmammalian vertebrates. In: KROBIL, E.; NEILL, J.D. (ed.). Encyclopedia of Reproduction. 1. ed., San Diego, Academic Press, 1998. p.498-508.
  35. LESSMAN, C.A. Oocyte maturation: Converting the zebrafish oocyte to the fertilizable egg. General and Comparative Endocrinology, New York, v.161, n.1, p.53–57, 2009.
  36. LUBZENS, E.; YOUNG, G.; BOBE, J.; CERDÀ, J. Oogenesis in teleosts: How fish eggs are formed. General and Comparative Endocrinology, New York, v.165, n.3, p.367-389, 2010.
  37. MARKSTRÖM, E.; SVENSSON E.C.; SHAO R.; SVANBERG B.; BILLIG H. Survival factors regulating ovarian apoptosis: dependence on follicle differentiation. Reproduction, v.123, p.23-30, 2002.
  38. MARTINS, F.S.; SILVA, J.R.V.; RODRIGUES, A.P.R.; FIGUEIREDO, J.R. Fatores
  39. reguladores da foliculogênese em mamiferos. Revista Brasileira de Reprodução Animal. v.32, n.1, p.36-49, 2008.
  40. MARTINS, Y.S.; MOURA, D.F.; SANTOS, G.B.; RIZZO, E.; BAZZOLI, N. Comparative folliculogenesis and spermatogenesis of four teleost fish from a Reservoir in south-eastern Brazil. Acta Zoologica, Stockholm, v.91, n.4, p.466-473, 2010.
  41. MCGEE, E.A.; HSUE, A.J. Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, v.21, n.2, p.200-214, 2000.
  42. MCNATTY K.P, HEATH D.A, LUNDY T, FIDLER A.E, QUIRKE L, O’CONNELL A, SMITH, P.; GROOME, N.; TISDALL, D.J. Control of early ovarian follicular development. Journal of Reproduction and Fertility, supl. 1, v.54 p.3-16, 1999.
  43. MCNATTY, K.P.; FIDLER, A.E.; JUENGEL, J.L.; QUIRKE, L.D.; SMITH, P.R.; HEATH, D.A.; LUNDY, T.; CONNELL, A.O.; TISDALL, D.J. Growth and paracrine factors regulating follicular formation and cellular function. Molecular and Cellular Endocrinology, v.163, n.1/2, p.11-20, 2000.
  44. MELONI, S.; MAZZINI, M. A monoclonal antibody against chorion proteins of the sea bass Dicentrarchus labrax (Linnaeus, 1758): studies of chorion precursors and applicability in immunoassays. Biology of Reproduction, v.60, n.4, p.783–789, 1999.
  45. MIRANDA, A.C.L.; BAZZOLI, N.; RIZZO, E.; SATO, Y. Ovarian follicular atresia intwo teleost species; a histological and ultrastructural study. Tissue & Cell, v.31, n.5, p.480-488, 1999.
  46. MIURA, T. Germ cell differentiation and maturation in teleost fish. Developmental Dynamics, v.248, n.4, p.284-305, 2019.
  47. MONIRUZZAMAN M, MIYANO T. Growth of primordial oocytes in neonatal and adult mammals. The Journal of Reproduction Development, v.56, n.6, p.559-66, 2010.
  48. MOORE, K.L.; PERSAUD, T.V.N. Embriologia Básica. 8.ed., Rio de Janeiro: Elsevier, 2008. MUÑOZ, M.; CASADEVALL, M.; BONET, S. Gonadal structure and gametogenesis of Aspitrigla obscura (Pisces, Triglidae). Italian Journal of Zoology, v.68, n.1, p.39-46, 2001. MURATA, K.; SUGIYAMA, H.; YASUMASU, S.; IUCHI, I.; YASUMASU, I.; YAMAGAMI, K. Cloning of cDNA and estrogen-induced hepatic gene expression for
  49. choriogenic H, a precursor protein of the fish egg envelope (chorion). National Academy of Science of the United States of America, v.94, p.2050-2055, 1997.
  50. NAGAHAMA, Y. The functional morphology of teleost gonads. In: HOAR, W.S.; RANDALL, D.J.; BRETT, J.R. Fish Physiology, Reproduction. 1. ed., New York: Academic Press. 1983.p.223-275.
  51. NAKAMURA, S.; KOBAYASHI, K.; NISHIMURA, T.; TANAKA, M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes). International Journal of Biological Sciences, Lake Haven, v.7, n.4, p.403–409, 2011.
  52. NISHIMURA, T.; TANAKA, M. Gonadal Development in Fish. Sexual development. Sexual Development, v.8, n.5, p.252–261, 2014.
  53. PATIÑO, R.; SULLIVAN, C.V. Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiology and Biochemistry, v.26, p.57-70, 2002.
  54. RANKIN, T.; SOYAL, S.; DEAN, J. The mouse zona pellucida: folliculogenesis, fertility and pre-implantation development. Molecular and Cellular Endocrinology, v.163, n.1/2, p.21- 25, 2000.
  55. RIZZO, E.; BAZZOLI, N. Follicular atresia in curimatá-pioa Prochilodus affinis Reinhardt (Pisces, Characiformes). Revista Brasileira de Biologia, v.55, n.1, p.697-703, 1995.
  56. RODRIGUEZ, K.F.; FARIN, C.E. Gene transcription and regulation of oocyte maturation. Reproduction Fertility and Development, v.16, n.1/2, p.55-67, 2004.
  57. SAIDAPUR, S.K. Follicular atresia in the ovaries of non mammalian vertebrates. International Review of Cytology, v.54, n.1, p.225-244, 1978.
  58. SÁNCHEZ, F.; SMITZ, J.; Molecular control of oogenesis. Biochimica et Bophysica Acta, v.1822, n.12, p.1896-1912, 2012.
  59. SANTOS, J.E.; RIZZO, E.; BAZZOLI, N.; SATO, Y.; MORO, L. Ovarian regression and apoptosis in the South American Teleost Leporinus Taeniatus Lutken (Characiformes, Anostomidae) from the São Francisco Basin. Journal of Fish Biology, v.67, n.5, p.1446-1459, 2005.
  60. SELMAN, K.; WALLACE, R.A. Gametogenesis in Fundulus heteroclitus American Zoologist, v.26, n.1, p.173-192, 1986.
  61. SELMAN, K.; WALLACE, R.A. Cellular aspects of oocyte growth in teleosts. American Zoologist, v.21, n.2, p.211-231, 1989.
  62. SILVA, J.R.V. Growth factors in goat ovaries and the role of activina-A in the development of esrly-staged follicles, 2005. 142p. (Tese de Doutorado em Reprodução Animal). Utrecht University, Faculty of Veterinary Medicine, 2005.
  63. SILVA, L.A. Maturação e Fertilização in vitro de oócitos estádio III de zebrafish, 2015. 46p. (Dissertação de Mestrado em Zootecnia, área de concentração: Produção Animal). Faculdade de Agronomia DA Universidade Federal do Rio Grande do Sul. Programa de Pós- Graduação em Zootecnia, 2015.
  64. SILVA, J.R.V.; VAN DEN HURK, R.; COSTA, S.H.F.; ANDRADE, E.R.; NUNES, A.P.A.; FERREIRA, F.V.A.; LÔBO, R.N.B.; FIGUEIREDO, J.R. Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Animal Reproduction Science, v.81, n.3/4, p.273-286, 2004.
  65. SOTO-SUAZO, M.; ZORN, T.M. Primordial germ cells migration: morphological and molecular aspects. Animal Reproduction, v.2, n.3, p.147-160, 2005. TOKARZ, R.R. Oogonial proliferation, oogenesis, and folliculogenesis in nonmammalian vertebrates. In: JONES, R.E. (ed.). The vertebrate ovary. 1. ed., New York, Plenum Press, 1978. p.145-179.
  66. VAN DEN HURK, R.; ZHAO, J. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology, v.63, n.6, p.1717- 1751, 2005.
  67. VAN CRUCHTEN S.; VAN DEN BROECK W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia Histologia Embryologia. v.31, n.4, p.214-23, 2002.
  68. WALLACE, R.A.; BEGOVAC, P.C. Phosphovitins in Fundulus oocytes and eggs. Preliminary chromatographic and eletrophoretic anlyses together with biological considerations. The Journal of Biological Chemistry, v.260, n.20, p.11268-11274, 1985.
  69. WEST, G. Methods of assessing ovarian development in fish: a review. Australian Journal of Marine and Freshwater Research, v.41, n.2, p.199-222, 1990.
  70. WOOD, A.W.; VAN DER KRAAK, G. Inhibition of apoptosis in vitellogenic ovarian follicles of rainbow trout (Oncorhynchus mykiss) by salmon gonadotrophin, epidermal growth factor, and 17β-estradiol. Molecular Reproduction and Development, v.61, p.511-518, 2002.