Correlação entre o tipo de diabetes e rigidez arterial em pacientes adultos
DOI:
https://doi.org/10.70368/gecs.v1i1.12230Palavras-chave:
Rigidez arterial, Diabetes mellitus, Velocidade de onda de pulsoResumo
O diabetes mellitus (DM) pode induzir alterações em diferentes territórios arteriais e está associado ao desenvolvimento de consequências cardiovasculares. O mecanismo fisiopatológico subjacente a essas associações ainda não se encontra totalmente elucidado na literatura. No entanto, a rigidez arterial pode ser um caminho importante que liga o DM ao aumento da morbimortalidade cardiovascular. Este estudo objetiva verificar uma correlação entre o tipo de DM e rigidez arterial em pacientes diagnosticados na fase adulta. Noventa pacientes diabéticos com idade de 54,1 ± 9,3 anos foram alocados em 2 grupos: paciente com DM do tipo 1 (DM1; n=30) e tipo 2 (DM2; n=60). Foram avaliados os parâmetros antropométricos bem como a rigidez arterial através do método da velocidade de onda de pulso (VOP). Evidenciou-se um maior tempo de diabetes (p=0,007), menor massa corporal (p=0,034), IMC (p=0,007) e circunferência da cintura (p<0,001) nos pacientes com DM1 em comparação com os DM2. Observou-se maior índice de VOP (p<0,001) nos pacientes DM1 quando confrontados com os DM2. Analisando conjuntamente ou separado quanto à etiologia do DM, observou-se que quanto maior a concentração de HbA1c (>8%) maior foram os valores da VOP (p<0,05). Foi observada uma correlação positiva entre a VOP e a idade dos pacientes (r=0,89; p<0,001), duração do diabetes (r=0,71; p<0,001) e a HbA1c (r=0,70; p<0,001). Pessoas com DM1 apresentaram maior rigidez arterial quando comparados aos DM2, sendo que essas alterações foram associadas com uma maior disfunção metabólica nessa população.
Referências
ADAY, A. W.; MATSUSHITA, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circulation research, v. 128, n. 12, p. 1818-1832, 2021. DOI: 10.1161/CIRCRESAHA.121.318535. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34110907/.
AN, Y. et al. Increased Arterial Stiffness as a Predictor for Onset and Progression of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Journal of Diabetes Research, v. 23, p. 9124656, 2021. DOI: 10.1155/2021/9124656. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486550/.
AZAHAR, N. M. et al. Association of Arterial Stiffness and Atherosclerotic Burden With Brain Structural Changes Among Japanese Men. Journal of American Heart Association, v. 12, n. 11, p. e028586, 2023. DOI: 10.1161/JAHA.122.028586. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37232267/.
BABA, M. et al. The Impact of the Blood Lipids Levels on Arterial Stiffness. Journal of cardiovascular development and disease, v. 10, n. 3, p. 127, 2023. DOI: 10.3390/jcdd10030127. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056627/.
BANDAY, M. Z.; SAMEER, A. S.; NISSAR, S. Pathophysiology of diabetes: An overview. Avicenna journal of medicine, v. 10, n. 4, p. 174-188, 2020. DOI: 10.4103/ajm.ajm_53_20. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791288/.
CANDELINO, M.; TAGI, V. M.; CHIARELLI, F. Cardiovascular risk in children: a burden for future generations. Italian journal of pediatrics, v. 48, n. 1, p. 57, 2022. DOI: 10.1186/s13052-022-01250-5. Disponível em: https://ijponline.biomedcentral.com/articles/10.1186/s13052-022-01250-5.
CHIRINOS, J. A. Large Artery Stiffness and New-Onset Diabetes. Circulation Research, v. 127, n. 12, p. 1499-1501, 2020. DOI: 10.1161/CIRCRESAHA.120.318317. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721077/.
FIRMINO, S. M. et al. Discriminative value of pulse wave velocity for arterial stiffness and cardiac injury in prediabetic patients. Brazilian Journal of Vascular, v. 22, p. e20230076, 2023. DOI: 10.1590/1677-5449.202300762. Disponível em: https://www.scielo.br/j/jvb/a/XjjGdJcbGKwW9tXML5rTwXN/?lang=en.
FU, J. et al. Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Molecular Metabolismo, v. 52, p. 101236, 2021. DOI: 10.1016/j.molmet.2021.101236. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33878400/.
FUHR, J. C. et al. Relationship of advanced glycation end-products in hypertension in diabetic patients: a systematic review. Brazilian Journal of Nefrology, v. 44, n. 4, p. 557-572, 2022. DOI: 10.1590/2175-8239-JBN-2022-0006en. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36300672/.
GIRALDO-GRUESO, M.; ECHEVERRI, D. From Endothelial Dysfunction to Arterial Stiffness in Diabetes Mellitus. Current Diabetes Review, v. 16, n. 3, p. 230-237, 2020. DOI: 10.2174/1573399814666181017120415. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30332971/.
GONZÁLEZ-CLEMENTE, J. M. et al. Arterial Stiffness in Type 1 Diabetes: The Case for the Arterial Wall Itself as a Target Organ. Journal of clinical medicine, v. 10, n. 16, p. 3616, 2021. DOI: 10.3390/jcm10163616. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397115/.
JIN, L. et al. Relative contributions of arterial stiffness to cardiovascular disease risk score in Chinese women in framingham and China-PAR model. Frontiers in cardiovascular medicine, v. 10, p. 1169250, 2023. DOI: 10.3389/fcvm.2023. Disponível em: https://www.frontiersin.org/articles/10.3389/fcvm.2023.1169250/full.
LIANG, Y. et al. Associations of blood biomarkers with arterial stiffness in patients with diabetes mellitus: A population-based study. Journal of Diabetes, v. 15, n. 10, p. 853-865, 2023. DOI: 10.1111/1753-0407.13433. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590681/.
LIM, T. H. et al. Peripheral Arterial Stiffness Increases the Risk of Progression of Renal Disease in Type 2 Diabetic Patients. Frontiers in medicine, v. 7, p. 588967, 2020. DOI: 10.3389/fmed.2020.588967. Disponível em: https://www.frontiersin.org/articles/10.3389/fmed.2020.588967/full.
LIU, H. et al. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Frontiers in endocrinology, v. 14, p. 1191426, 2023. DOI: 10.3389/fendo.2023.1191426. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333703/.
LOUTRADIS, C. et al. Comparison of ambulatory central hemodynamics and arterial stiffness in patients with diabetic and non-diabetic CKD. Journal of clinical hypertension, v. 22, n. 12, p. 2239-2249, 2020. DOI: 10.1111/jch.14089. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029709/.
MONTEIRO, C. I. et al. Arterial stiffness in type 2 diabetes: determinants and indication of a discriminative value. Clinics, v. 76, p. e2172, 2021. DOI: 10.6061/clinics/2021/e2172. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885854/.
PAAPSTEL, K.; KALS, J. Metabolomics of Arterial Stiffness. Metabolites, v. 12, n. 5, p. 370, 2022. DOI: 10.3390/metabo12050370. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146333/.
OLIVEIRA ALVIM, R. et al. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetology & metabolic syndrome, v. 5, n. 1, p. 1-8, 2013. DOI: 10.1186/1758-5996-5-45. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765236/.
PADOVANI, C.; ARRUDA, R. M. D. C.; SAMPAIO, L. M. M. Does Type 2 Diabetes Mellitus Increase Postoperative Complications in Patients Submitted to Cardiovascular Surgeries? Brazilian journal of cardiovascular surgery, v. 35, n. 3, p. 249-253, 2020. DOI: 10.21470/1678-9741-2019-0027. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299576/.
PARK, J. B. et al. Expert Consensus on the Clinical Use of Pulse Wave Velocity in Asia. Pulse, v. 10, n. 4, p. 1-18, 2022. DOI: 10.1159/000528208. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843646/.
PATOULIAS, D. et al. Prognostic value of arterial stiffness measurements in cardiovascular disease, diabetes, and its complications: The potential role of sodium-glucose co-transporter-2 inhibitors. Journal of Clinical Hypertension, v. 22, n. 4, p. 562-571, 2020. DOI: 10.1111/jch.13831. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32058679/.
PÉREZ, R. E. et al. Hemoglobin A1c, hemoglobin glycation index, and triglyceride and glucose index: Useful tools to predict low feed intake associated with glucose intolerance in lactating sows. PLoS One, v. 17, n. 5, p. e0267644, 2022. DOI: 10.1371/journal.pone.0267644. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35511787/.
PIKO, N. et al. Higher Body Mass Index is associated with increased arterial stiffness prior to target organ damage: a cross-sectional cohort study. BioMed Central cardiovascular disorders, v. 23, n. 1, p. 460, 2023. DOI: 10.1186/s12872-023-03503-5. Disponível em: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-023-03503-5.
RAJBHANDARI, J. et al. Diabetic heart disease: A clinical update. World journal of diabetes, v. 12, n. 4, p. 383-406, 2021. DOI: 10.4239/wjd. v12.i4.383. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040078/.
REY-GARCÍA, J.; TOWNSEND, R. R. Large Artery Stiffness: A Companion to the 2015 AHA Science Statement on Arterial Stiffness. Pulse, v. 9, n. 2, p. 1-10, 2021. DOI: 10.1159/000518613. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527919/.
SÁ DA SILVA, L. E. et al. Data Resource Profile: Surveillance System of Risk and Protective Factors for Chronic Diseases by Telephone Survey for adults in Brazil (Vigitel). International journal of epidemiology, v. 50, n. 4, p. 1058-1063, 2021. DOI: 10.1093/ije/dyab104. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34050649/.
SARA, J. D. S. et al. Mental Stress and Its Effects on Vascular Health. Mayo Foundation for Medical Education and Research, v. 97, n. 5, p. 951-990, 2022. DOI: 10.1016/j.mayocp.2022.02.004. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058928/.
SEQUÍ-DOMÍNGUEZ, I. et al. Accuracy of Pulse Wave Velocity Predicting Cardiovascular and All-Cause Mortality. A Systematic Review and Meta-Analysis. Journal of clinical medicine, v. 9, n. 7, p. 2080, 2020. DOI: 10.3390/jcm9072080. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408852/.
SHARMAN, J. E. et al. Automated 'oscillometric' blood pressure measuring devices: how they work and what they measure. Journal of human hypertension, v. 37, n. 2, p. 93-100, 2023. DOI: 10.1038/s41371-022-00693-x. Disponível em: https://www.nature.com/articles/s41371-022-00693-x.
SOUKUP, L. et al. Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study. Sensors, v. 22, n. 5, p. 1910, 2022. DOI: 10.3390/s22051910. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915004/.
STAEF, M. et al. Determinants of arterial stiffness in patients with type 2 diabetes mellitus: a cross sectional analysis. Scientific Reports, v. 13, n. 1, p. 8944, 2023. DOI: 10.1038/s41598-023-35589-4. Disponível em: https://www.nature.com/articles/s41598-023-35589-4.
STANDL, E. et al. The global epidemics of diabetes in the 21st century: Current situation and perspectives. European journal of preventive cardiology, v. 26, n. 2, p. 7-14, 2019 DOI: 10.1177/2047487319881021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31766915/.
TIAN, X. et al. Hypertension, Arterial Stiffness, and Diabetes: a Prospective Cohort Study. Hypertension, v. 79, n. 7, p. 1487-1496, 2022. DOI: 10.1161/HYPERTENSIONAHA.122.19256. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35574838/.
TOMIC, D.; SHAW, J. E.; MAGLIANO, D. J. The burden and risks of emerging complications of diabetes mellitus. Nature reviews. Endocrinology, v. 18, n. 9, p. 525-539, 2022. DOI: 10.1038/s41574-022-00690-7. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35668219/.
TOMIYAMA, H.; SHIINA, K. State of the Art Review: Brachial-Ankle PWV. Journal of Atherosclerosis and Thrombosis, v. 27, n. 7, p. 621-636, 2020. DOI: 10.5551/jat.RV17041. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406407/.
TURGUTKAYA, A.; AŞÇI, G. The association between HbA1c and arterial stiffness among non-diabetic patients with chronic kidney disease. Brazilian Journal of Vacular, v. 20, p. e20200245, 2021. DOI: 10.1590/1677-5449.200245. Disponível em: https://www.scielo.br/j/jvb/a/ByWYLH6XSSHgggdmpjdzYPK/.
VELAGIC, A. et al. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Frontier of Pharmacology, v. 11, p. 727, 2020. DOI: 10.3389/fphar.2020.00727. Disponível em: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.00727/full
WANG, M.; LI, Y.; LI, S.; LV, J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Frontier of Endocrinology, v. 13, p. 851941, 2022. DOI: 10.3389/fendo.2022.851941. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35464057/.
YU, J. et al. Association Between Glucose Metabolism And Vascular Aging In Chinese Adults: A Cross-Sectional Analysis In The Tianning Cohort Study. Clinical Interventions in Aging, v. 14, p. 1937-1946, 2019. DOI: 10.2147/CIA.S223690. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842737/.
ZHANG, X. et al. Threshold values of brachial cuff-measured arterial stiffness indices determined by comparisons with the brachial-ankle pulse wave velocity: a cross-sectional study in the Chinese population. Frontiers in cardiovascular medicine, v. 10, p. 1-12, 2023. DOI: 10.3389/fcvm.2023.1131962. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381930/.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2024 Carla Cristina de Sordi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.