BACTÉRIAS RESISTENTES A ANTIBIÓTICOS EM AMBIENTE AQUÁTICO: EFEITO NA PRODUÇÃO ANIMAL
Palabras clave:
Mecanismos de resistência, Microbiologia, Multirresistência, Resistoma, Transferência de genesResumen
Objetivou-se discorrer sobre bactérias resistentes a antibióticos veiculadas em ambientes aquáticos, considerando os mecanismos, formas de aquisição e os efeitos à produção animal. A utilização de antibióticos para fins profiláticos, terapêuticos e agropecuários cresceu em larga escala nos últimos anos, levando à perda de eficiência no combate a patógenos. A crise atual dos antibióticos é decorrente de uma falha geral em compreender de forma abrangente a evolução, as fontes, a disseminação e os mecanismos moleculares da resistência, pois os reservatórios ambientais potenciais e suas diversidades genéticas de resistência associadas geralmente não são considerados no desenvolvimento de drogas. Assim, a pressão de seleção aplicada pelos antibióticos em diversos ambientes tem promovido a evolução e disseminação de genes de resistência bacteriana em escala mundial, nos mais variados tipos de ambientes. Resíduos antibióticos persistem no solo e em ambientes aquáticos, este último, atuando como importante reservatório de bactérias, facilitando a troca de material genético entre bactérias ambientais e patogênicas e permitindo a disseminação de genes e modificações no resistoma ambiental. Desta forma, existe uma preocupação tanto para a medicina humana quanto a veterinária devido a diversidade de doenças causadas em humanos e animais domésticos por bactérias multirresistentes. Entender as origens, diversidade e mecanismos de resistência com potencial para impactar animais de produção é de grande importância para identificar os riscos associados a interação entre bactérias de diferentes ecossistemas e o impacto destas à produção animal, seja pelo comprometimento da saúde dos animais e/ou pela contaminação dos produtos produzidos por estes e consequentes danos à saúde humana.
Citas
AL SALAH, D.M.M.; LAFFITE, A.; POTÉ, J. Occurrence of Bacterial Markers and Antibiotic Resistance Genes in Sub-Saharan Rivers Receiving Animal Farm Wastewaters. Scientific Reports, v.9, n.1, p.1–10, 2019.
AMARASIRI, M.; SANO, D.; SUZUKI, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, v.50, n.19, p.2016–2059, 2019.
ASLAM, B.; WANG, W.; ARSHAD, M.I.; KHURSHID, M.; MUZAMMIL, S.; RASOOL, M.H.; NISAR, M.A.; ALVI, R.F.; ASLAM, M.A.; QAMAR, M.U.; SALAMAT, M.K.F.; BALOCH, Z. Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, v.11, p.1645–1658, 2018.
BANTAWA, K.; SAH, S.N.; SUBBA LIMBU, D.; SUBBA, P.; GHIMIRE, A. Antibiotic resistance patterns of Staphylococcus aureus, Escherichia coli, Salmonella, Shigella and Vibrio isolated from chicken, pork, buffalo and goat meat in eastern Nepal. BMC Research Notes, v.12, n.1, p.766–773, 2019.
BAPTISTA, D.Q.; SANTOS, A.F.M.; AQUINO, M.H.C.; ABREU, D.L.C.; RODRIGUES, D.P.; NASCIMENTO, E.R.; PEREIRA, V.L.A. Prevalence and antimicrobial susceptibility of Salmonella spp. serotypes in broiler chickens and carcasses in the State of Rio de Janeiro, Brazil. Pesquisa Veterinária Brasileira, v.38, n.7, p.1278–1285, 2018.
BROWN, E.E.F.; COOPER, A.; CARRILLO, C.; BLAIS, B. Selection of multidrug-resistant bacteria in medicated animal feeds. Frontiers in Microbiology, v.10, n.456, p.1–10, 2019.
CARDOSO, B.F.; OYAMADA, G.C.; SILVA, C. M. Produção, Tratamento e Uso dos Dejetos Suínos no Brasil. Desenvolvimento em Questão, v.13, n.32, p.127–745, 2015.
CASELLA, T.; HAENNI, M.; MADELA, N.K.; ANDRADE, L.K.; PRADELA, L.K.; ANDRADE, L.N.; DARINI, A.L.C.; MADEC, J.Y.; NOGUEIRA, M.C.L. Extended-spectrum cephalosporin-resistant Escherichia coli isolated from chickens and chicken meat in Brazil is associated with rare and complex resistance plasmids and pandemic ST lineages. Journal of Antimicrobial Chemotherapy, v.73, n.12, p.3293–3297, 2018.
CDC. About Antimicrobial Resistance. 2015. Disponível em: <https://www.cdc.gov/drug resistance/about.html>. Acesso em: 01 jun 2020.
CHEN, M.; QIU, T.; SUN, Y.; SONG, Y.; WANG, X.; GAO, M. Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. Environmental Science and Pollution Research, v.26, n.23, p.24213–24222, 2019.
CHEN, W.; WILKES, G.; KHAN, I.U.H.; PINTAR, K.D.M.; THOMAS, J.L.; LÉVESQUE, C.A.; CHAPADOS, J.T.; TOPP, E.; LAPEN, D.R. Aquatic bacterial communities associated with land use and environmental factors in agricultural landscapes using a metabarcoding approach. Frontiers in Microbiology, v.9, n.2301, p.1–23, 2018.
COCULESCU, B.I. Antimicrobial resistance induced by genetic changes. Journal of Medicine and Life, v.2, p.114–123, 2009.
COLLIGNON, P.J.; MCEWEN, S.A. One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Tropical Medicine and Infectious Disease, v.4, n.1, p.1–22, 2019.
CROFTS, T.S.; GASPARRINI, A.J.; DANTAS, G. Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, v.15, n.7, p.422–434, 2017.
DAHMEN, S.; MÉTAYER, V.; GAY, E.; MADEC, J.Y.; HAENNI, M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Veterinary Microbiology, v.162, n.2/4, p.793–799, 2013.
DEL FIOL, F.S.; GROPPO, F.C. Resistência Bacteriana. Revista Brasileira de Medicina, v.57, n.10, p.1129–1140, 2014.
ECONOMOU, V.; GOUSIA, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and Drug Resistance, v.8, p.49–61, 2015.
GRAMI, R.; DAHMEN, S.; MANSOUR, W.; MEHRI, W.; HAENNI, M.; AOUNI, M.; MADEC, J.Y. bla CTX-M-15 -Carrying F2: A-:B- Plasmid in Escherichia coli from Cattle Milk in Tunisia. Microbial Drug Resistance, v.20, n.4, p.344–349, 2014.
HE, L.Y.; YING, G.G.; LIU, Y.S.; SU, H.C.; CHEN, J.; LIU, S.S.; ZHAO, J.L. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, v.92/93, n.7–8, p.210–219, 2016.
HOBSON, C.; CHAN, A.N.; WRIGHT, G.D. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chemical Reviews, v.121, n.6, p.3464–3494, 2021.
JI, G.; CHEN, Q.; GONG, X.; ZHENG, F.; LI, S.; LIU, Y. Pakistan Veterinary Journal Topoisomerase Mutations are Associated with High-Level Ciprofloxacin Resistance in Staphylococcus saprophyticus, Enterococcus faecalis and Escherichia coli Isolated from Ducks. Pakistan Veterinary Journal, v.38, n.1, p.39–45, 2018.
KAPOOR, G.; SAIGAL, S.; ELONGAVAN, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical Pharmacology, v.33, n.3, p.300–305, 2017.
KRAEMER, S.A.; RAMACHANDRAN, A.; PERRON, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms, v.7, n.180, p.1-24, 2019.
KÜMMERER, K. Antibiotics in the aquatic environment – A review – Part I. Chemosphere, v.75, n.4, p.417-434, 2009.
LENTZ, S.A.M.; ADAM, F.C.; RIVAS, P.M.; SOUZA, S.N.; CUPERTINO, V.M.L.; BOFF, R.T.; MOTTA, A.S.; WINK, P.L.; BARTH, A.L.; MARTINS, A.F. High Levels of Resistance to Cephalosporins Associated with the Presence of Extended-Spectrum and AmpC β-Lactamases in Escherichia coli from Broilers in Southern Brazil. Microbial Drug Resistance, v.26, n.5, p.1–5, 2019.
LIU, Y.Y.; WANG, Y.; WALSH, T.R.; YI, L.X.; ZHANG, R.; SPENCER, J.; DOI, Y.; TIAN, G.; DONG, B.; HUANG, X.; YU, L.F.; GU, D.; REN, H.; CHEN, X.L.V.L.; HE, D.; ZHOU, H.; LIANG, Z.; LIU, J.H.; SHEN, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, v.16, n.2, p.161–168, 2016.
MACHADO, E.; COQUE, T.M.; CANTO, R. Antibiotic resistance integrons and extended-spectrum B-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. Journal of Antimicrobial Chemotherapy, v.62, n.5, p.296–302, 2008.
MANYI-LOH, C.; MAMPHWELI, S.; MEYER, E.; OKOH, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules, v.23, n.4, p.1–48, 2018.
MARNI, S.; MARZURA, M.R.; EDDY, A.A.; SULIANA, A.K. Veterinary drug residue in chicken, pork and beef in Peninsular Malaysia in the period 2010-2016. Malaysian Journal of Veterinary Research, v.8, n.2, p.71–77, 2017.
MARSHALL, B.M.; LEVY, S.B. Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews, v.24, n.4, p.718–733, 2011.
MARTI, E.; VARIATZA, E.; BALCAZAR, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, v.22, n.1, p.36–41, 2014.
MARTINEZ, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, v.157, n.11, p.2893–2902, 2009.
MARTINEZ, J.L.; BAQUERO, F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala journal of medical sciences, v.119, n.2, p.68–77, 2014.
MARTINEZ, J.L.; COQUE, T.M.; BAQUERO, F. What is a resistance gene? Ranking risk in resistomes. Nature reviews. Microbiology, v.13, n.2, p.116–123, 2015.
MÜNCH, D.; SAHL, H.G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. Biochimica et Biophysica Acta – Biomembranes, v.1848, n.11, p.3062–3071, 2015.
MUNITA, J.M.; ARIAS, C.A. Mechanisms of Antibiotic Resistance. Microbiology Spectrum, v.4, n.2, p.1–37, 2016.
MURRAY, P.R.; ROSENTHAL, K.S.; PFALLER, M.A. Microbiologia médica. 8th ed., [S. l.]: Elsevier Inc., 2017. 888p.
NEIHARDT, F. Bacterial genetics. Sherri’s Medical Microbiology - An introduction to infectious diseases. 4th ed., New York: McGraw Hill, p.53–74, 2004.
NOVO, A.; ANDRÉ, S.; VIANA, P.; NUNES, O.C.; MANAIA, C.M. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Research, v.47, n.5, p.1875–1887, 2013.
PATHAK, A.; KUMAR, D.; KUMAR V, P.; KAMBOJ, A.; SHARMA, J.; SHUKLA, M.; UPADHYAY, A.K.; KARABASANAVAR, N.; KAUSHIK, P.; SINGH, S.P. Mutations in DNA gyrase and topoisomerase genes linked to fluoroquinolone resistance in Salmonella Typhimurium of animal origin in India. Journal of Global Antimicrobial Resistance, v.15, n.4, p.268–270, 2018.
PEHRSSON, E.C.; TSUKAYAMA, P.; PATEL, S.; MEJÍA-BAUTISTA, M.; SOSA-SOTO, G.; NAVARRETE, K.M.; CALDERON, M.; CABRERA, L.; HOYOS-ARANGO, W.; BERTOLI, M.T.; BERG, D.E.; GILMAN, R.H.; DANTAS, G. Interconnected microbiomes and resistomes in low-income human habitats. Nature, v.533, n.212–216, p.1–32, 2016.
PETERSON, E.; KAUR, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology, v.9, n.2928, p.1–21, 2018.
PITONDO-SILVA, A.; MARTINS, V.V.; FERNANDES, A.F.T.; STEHLING, E.G. High level of resistance to Aztreonam and Ticarcillin in Pseudomonas aeruginosa isolated from soil of different crops in Brazil. Science of the Total Environment, v.473–474, p.155–158, 2014.
PRESTINACI, F.; PEZZOTTI, P.; PANTOSTI, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathogeny of Global Health, v.109, n.7, p.309–318, 2015.
RESENDE, J.A.; SILVA, V.L.; DINIZ, C.G. Aquatic environments in the One Health context: modulating the antimicrobial resistance phenomenon. Acta Limnológica Brasiliensia, v.32, n.102, p.1–10, 2020.
RONQUILLO, M.G.; HERNANDEZ, J.C.A. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control, v.72, n.2b, p.255–267, 2017.
SANTOS-LOPEZ, A.; MARSHALL, C.W.; SCRIBNER, M.R.; SNYDER, D.J.; COOPER, V.S. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife, v.8, n.47612, p.1–10, 2019.
SHARMA, A.; GUPTA, V.K.; PATHANIA, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, v.149, n.2, p.129–145, 2019.
SHARMA, P.; TOMAR, S.K.; GOSWAMI, P.; SANGWAN, V.; SINGH, R. Antibiotic resistance among commercially available probiotics. Food Research International, v.57, n.3, p.176–195, 2014.
SIEBER, G.; BEISSER, D.; BOCK, C.; BOENIGK, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Scientific Reports, v.10, n.1, p.1–11, 2020.
SOUSA, A.T.H.I.; MAKINO, H.; BRUNO, V.C.M.; CANDIDO, S.L.; NOGUEIRA, B.S.; MENEZES, I.G.; NAKAZATO, L.; DUTRA, V. Perfil de resistência antimicrobiana de Klebsiella pneumoniae isoladas de animais domésticos e silvestres. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.71, n.2, p.584–593, 2019.
SU, H.; LIU, S.; HU, X.; XU, X.; XU, W.; XU, Y.; LI, Z.; WEN, G.; LIU, Y.; CAO, Y. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms. Science of the Total Environment, v.607/608, p.357–366, 2017.
SULTAN, I.; RAHMAN, S.; JAN, A.T.; SIDDIQUI, M.T.; MONDAL, A.H.; HAQ, Q.M.R. 2018. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, v.9, n.2066, p.1–16, 2018.
TEKLU, D.S.; NEGERI, A.A.; LEGESE, M.H.; BEDADA, T.L.; WOLDEMARIAM, H.K.; TULLU, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance & Infection Control, v.8, n.1, p.1–12, 2019.
TOOKE, C.; HINCHLIFFE, P.; BRAGGINTON, E.; COLENSO, C.; HIRVONEN, V.; TAKEBAYASHI, Y.; SPENCER, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, v.431, n.18, p.3472–3500, 2019.
UDE, J.; TRIPATHI, V.; BUYCK, J.M.; SÖDERHOLM, S.; CUNRATH, O.; FANOUS, J.; CLAUDI, B.; EGLI, A.; SCHLEBERGER, C.; HILLER, S.; BUMANN, D. Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, v.118, n.31, p.1–8, 2021.
VAN BOECKEL, T.P.; BROWER, C.; GILBERT, M.; GRENFELL, B.T.; LEVIN, S.A.; ROBINSON, T.P.; TEILLANT, A.; LAXMINARAYAN, R. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, v.112, n.16, p.1–6, 2015.
VAZ-MOREIRA, I.; NUNES, O.C.; MANAIA, C.M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiology Reviews, v.38, n.4, p.761–778, 2014.
WATFORD, S.; WARRINGTON, S.J. Bacterial DNA Mutations. Disponível em: <https://www.ncbi.nlm.nih.gov/books/NBK459274/>. Acesso em: 01 set 2021.
ZANGO, U.U.; IBRAHIM, M.; SHAWAI, S.A.A.; SHAMSUDDIN, I.M. A review on β-lactam antibiotic drug resistance. Disponível em: <https://doi.org/10.15406/mojddt. 2019.03.00080>. Acesso em: 01 set 2021.
ZHANG, L.; HUANG, Y.; ZHOU, Y.; BUCKLEY, T.; WANG, H.H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrobial Agents and Chemotherapy, v.57, n.8, p.3659–3666, 2013.