Extracellular matrix involviment in canine mammary tumor
Keywords:
Mammary gland, Extracellular matrix, Microenviroment, Canine mammary tumorAbstract
Mammary gland (MG) is a dynamic tissue derived from the epidermis and your development depends on the interaction between mammary cells and stroma. Extracellular matrix (ECM) is the major extracellular content of tissues responsible for supporting connective tissue and basement membrane, and serves as a reservoir for many growth factors. ECM is comprised of insoluble protein fibers as collagens, laminins, fibronectins and soluble polymers as proteoglycans, and glycosaminoglycans. The ECM components are important both during morphogenesis of MG as to maintain this fabric giving support and storage of substrates needed for the growth. ECM disorder in GM may be the progression trigger of the breast tumor. Canine mammary tumor (CMT) is a complex of malignancies that have the participation of several factors for its development, including ECM components. Therefore an investigation of ECM in the diagnosis of CMT becomes important to establish a relationship between componentes of matrix and neoplastic cells, including information on the biological behavior and clinical staging of CMT. The knowledge of ECM molecules participation in the development of CMT may further therapeutic approaches targeting elements of ECM. Thus, this review has a focus on the ECM components participation in the processes that contribute to CMT establishment, which may favor therapeutic approaches targeting elements of ECM.
References
AFRATIS, N.; GIALELI, C.; NIKITOVIC, D.; TSEGENIDIS, T.; KAROUSOU, E.; THEOCHARIS, A.D.; PAVÃO, M.S.; TZANAKAKIS, G.N.; KARAMANOS, N.K. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS Journal, v.279, n.7, p.1177–1197, 2012.
ALBERGARIA, A.; RIBEIRO, A.; VIEIRA, A.; SOUSA, B. P-cadherin role in normal breast development and cancer. International Journal of Developmental Biology, v.55, p.811–822, 2011.
ARAI, K.; UEHARA, K.; NAGAI, Y. Expression of type II and XI collagens in canine mammary complex tumors and demonstration of collagen production of tumor cells in collagen gel culture. Japanese Journal of Cancer Research, v.80, n.9, p.840–847, 1989.
ARAI, K.; NAOI, M.; UEHARA, K. Immunohistochemical examination of neural cell adhesion molecule (NCAM), tenascin and fibronectin on the development of cartilaginous tissue in canine mammary mixed tumors. Japanese Journal of Cancer Research, v.56, n.4, p.809-811, 1994.
ARESU, L.; GIANTIN, M.; MORELLO, E.; VASCELLARI, M.; CASTAGNARO, M.; LOPPARELLI, R.; ZANCANELLA, V.; GRANATO, A.; GARBISA, S.; ARICÒ, A.; BRADASCHIA, A.; MUTINELLI, F.; DACASTO, M. Matrix metalloproteinases and their inhibitors in canine mammary tumors. BMC Veterinary Research, v.7, n.1, p.33, 2011
BARCZYK, M.; CARRACEDO, S.; GULLBERG, D.. Integrins. Cell Tissue Research, v.339, n.1, p.269–80, 2010.
BONNANS, C.; CHOU, J.; WERB, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.786–801, 2014.
CHIQUET-EHRISMANN, R.; CHIQUET, M. Tenascins: regulation and putative functions during pathological stress. Journal of Pathology, v.200, n.4, p.488–499, 2003
CONKLIN, M.W.; KEELY, P.J. Why the stroma matters in breast cancer Insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhesion & Migration, v.6, n.3, p.249-260, 2012.
DAMASCENO, K.A.; BERTAGNOLLI, A.C.; ESTRELA-LIMA, A.; RABELO, B.S.; CAMPOS, L.C.; RIBEIRO, L.G.R.; CASSALI, G.D. Versican expression in myoepithelial cells from carcinomas in canine mixed mammary tumors. The Veterinary Journal, v.200, n.1, p.146–151, 2014.
DAMASCENO, K.A.; BERTAGNOLLI, A.C.; ESTRELA-LIMA, A.; RIBEIRO, L.G.; RABELO, B.S.; CAMPOS, C.B.; BARROS, A.L.B.; CASSALI, G.D. Versican expression in canine carcinomas in benign mixed tumours: is there an association with clinical pathological factors, invasion and overall survival? BMC Veterinary Research, v.8, p.195-203, 2012.
DESGROSELLIER, J.S.; CHERESH, D.A. Integrins in cancer: biological implications and therapeutic opportunities Nature Reviews Cancer, v.10, p.9-22, 2010.
DU, W.W.; YANG, W.; YEE, A.J. Roles of versican in cancer biology - tumorigenesis, progression and metastasis. Histology and Histopathology, v.28, p.701-713, 2013.
EGEBLAD, M.; NAKASONE, E.S.; WERB, Z. Tumors as organs: Complex tissues that interface with the entire organism. Developmental Cell, v.18, p.884-901, 2010.
ERDÉLY, V.A.; DIJK, M.V.; NEDERBRAGT, J.H. Expression of versican in relation to chondrogenesis-related extracelular matrix components in canine mammary tumors. Histochemical Cell Biology, v.124, p.139–149, 2005.
FATA, J.E.; WERB, Z.; BISSELL, M.J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, v.6, p.1–11, 2004.
FAUSTINO, A.M.R.; VAN GARDEREN, E.; SCHALKEN, J.A.; NEDERBRAGT, H. Tenascin expression in normal, hyperplastic, dysplastic and neoplastic canine mammary tissues. Journal of Comparative Pathology, v.126, n.1, p.1–8, 2002.
FERGUSON, H. R. Canine mammary gland tumors. The Veterinary Clinics of North America: Small Animal Practice, v.15, n.3, p.501-511, 1985.
GAMA, A.; PAREDES, J.; GÄRTNER, F.; ALVES, A.; SCHMITT, F. Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumours in relation to clinicopathological parameters, proliferation and survival. The Veterinary Journal, v.77, n.1, p.45–53, 2008.
GAMA, A.; SCHMITT, F. Cadherin cell adhesion system in canine mammary cancer: a review. Veterinary Medicine International, p.1-8, 2012.
GANDHI, N.S.; MANCERA, R.L. The structure of glycosaminoglycans and their Interactions with proteins. Chemichal Biology & Drug Design, v.72, n.6, p.455-482, 2008.
GORDON, M.K.; HAHN, R.A. Collagens. Cell Tissue Research, v.339, p.247–257, 2010.
GUDJONSSON, T.; VILLADSEN, R.; NIELSEN, H.L.; RØNNOV-JESSEN, L.; BISSELL M.J.; PETERSEN, O.W. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes & Development, v.16, p.693–706, 2002.
HALPER, J.; KJAER, M. Progress in heritable soft connective tissue Diseases. Halper J, editor. Dordrecht: Springer Netherlands, p.802, 2014
HANAHAN, D.; WEINBERG, R.A. Hallmarks of cancer: The next generation. Cell, v. 144, n.4, p. 646-674, 2011.
HINRICHS, U.; RUTTEMAN, G.R.; NEDERBRAGT, H. Stromal accumulation of chondroitin sulphate in mammary tumours of dogs. British Journal of Cancer, v.80, p.1359–1365, 1990.
HUMPHREY, J.D.; DUFRESNE, E.R.; SCHWARTZ, M.A. Mechanotransduction and extracellular matrix homeostasis. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.802–812, 2014.
HYNES, R.O. The extracellular matrix: not just pretty fibrils. Science, v.326, p.1216-1219, 2009.
IORIO, V.; TROUGHTON, L.D.; HAMILL, K.J. Laminins: roles and utility in wound repair. Advances in Wound Care, v.4, n.4, p.250–263, 2015.
KASS, L.; ERLER, J.T.; DEMBO, M.; WEAVER, V.M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. International Journal of Biochemical Cell Biology, v.39, n.11, p.1987–1994, 2007.
KAWAI, K.; UETSUKA, K.; DOI, K.; NAKAYAMA, H. The activity of matrix metalloproteinases (MMPs) and tissue tnhibitors of metalloproteinases (TIMPs) in mammary tumors of dogs and rats. Journal of Veterinary Medicine Science, v.68, n.2, p.105–111, 2005.
KIM, C.H. Crawling of effector T cells on extracellular matrix: role of integrins in intersticial mibration in inflamed tissues. Cellular & Molecular Immunology, v.11, p.1-4, 2014.
KLOPFLEISCH R., KLOSE, P.; GRUBER, A.D. The combined expression pattern of BMP2, LTBP4, and DERL1 discriminates malignant from benign canine mammary tumors. Veterinary Pathology, v.47, n.3, p. 446-454, 2010.
KULAR, J.K.; BASU, S.; SHARMA, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, v.5, p.1-7, 2014.
LEY, K.;, LAUDANNA, C.; CYBULSKY, M.I.; NOURSHARGH, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Review Immunology, v.7, n.9, p.678–89, 2007.
LU, P.; WEAVER, V.M.; WERB, Z. The extracellular matrix: a dynamic niche in cancer progression. Journal of Cell Biology, v.196, n.4, p.395–406, 2012.
MARTINS, A.M.; TAMASO, E.; GUERRA, J.L. Retrospective review and systematic study of mammary tumors in dogs and characteristics of the extracellular matrix. Brazilian Journal of Veterinary Research and Animal Science, v.29, n.1, p.38–42, 2002.
MOUW, J.K.; OU, G.; WEAVER, VM. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.771–85, 2014.
OLIVEIRA FILHO, J.C.; KOMMERS, G.D.; MASUDA, E.K.; MARQUES, B.M.F.P.P.; FIGHERA, R.A.; IRIGOYEN, L.F.; BARROS, C.S.L. Estudo retrospectivo de 1.647 tumores mamários em cães. Pesquisa Veterinária Brasileira, v.30, n.2, p.177-185, 2010.
OREND, G.; CHIQUET-EHRISMANN, R. Tenascin-C induced signaling in cancer. Cancer Letters, v.244, n.2, p.143–63, 2006.
PALTIAN, V.; ALLDINGER, S.; BAUMGÄRTNER, W.; WOHLSEIN, P. Expression of CD44 in canine mammary tumours. Journal of Comparative Pathology, v.141, n.4, p.237–47, 2009.
PANDEY, P.R.; SAIDOU, J.; WATABE, K. Role of myoepithelial cells in breast tumor progression. Frontiers in Bioscience, v.15, p.226–36, 2011.
PAPPARELLA, S.; RESTUCCI, B.; MAIOLINO, P.; DE VICO, G. Immunohistochemical distribution of type IV collagenase in normal, dysplastic and neoplastic canine mammary gland. Journal of Comparative Pathology, v.117, n.3, p.277-82, 1997.
PEÑA, L.; NIETO, A.; PEREZ, MD.; RODRIGUEZ, A.; SANCHES, M.A.; CASTAÑO, M. Expression of fibronectin and its integrin receptor α5β1 in canine mammary tumours. Research in Veterinary Science, v.57, n.3, p.358-64, 1994.
PIEKARZ, C.H.; BIONDO, A.W.; AMORIM, R.L.; RODASKI, S.; BARROS FILHO, I.R.; DE NARDI, A.B. Expressão das caderinas nos tumores mamários em cadelas. Archives of Veterinary Science, v.13, n.1, p.13-21, 2008.
PONTA, H.; SHERMAN, L.; HERLICH, A. CD44: from adhesion molecules to signaling regulators. Molecular Cell Biology, v.4, p.33-45, 2003.
RESTUCCI, B.; DE VICO, G.; MAIOLINO, P. Expression of β-integrin in normal, dysplastic and neoplastic canine mammary gland. Journal of Comparative Pathology, v.113, n.2, p.165-173, 1995.
RESTUCCI, B.; MAIOLINO, P.; MARTANO, M.; ESPOSITO, G.; FILIPPIS, D.; BORZACCHIELLO, G.; MUZIO, L. Expression of β-catenin, E-cadherin and APC in canine mammary tumors. Anticancer Research, v.27, n.5A, p.3083-3089, 2007.
ROZARIO, T.; DESIMONE, D.W. The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, v.341, p.126–140, 2010.
SALMI, M.; JALKANEM, S. Cell-surface enzymes in control of leukocyte trafficking. Nature Review in Immunology, v.5, p. 760-771, 2005.
SAKAKURA, T.; ISHIHARA, A.; YATANI, R. Tenascin in mammary gland development: from embryogenesis to carcinogenesis. Cancer Treat Research, v.53, p.383-400, 1991.
SANTOS, A.; LOPES, C.; FRIAS, C.; AMORIM, I.; VICENTE, C.; GÄRTNER, F.; MATOS, A. Immunohistochemical evaluation of MMP-2 and TIMP-2 in canine mammary tumours: a survival study. The Veterinary Journal, v.190, n.3, p.396–402, 2011.
SCHEDIN, P.; KEELY, P.J. Mechanosignaling in Normal Development and Tumor Progression. Cold Spring Harbor Perspectives in Biology, v.3, p.1–22, 2011.
SHAM, M.M.; AZMI, N.S.; HASBI, M.; RAHIM, A.; PAHANG, D.M. Review : Glycosaminoglycans (GAGs) versus Cancer. Journal Environmental Bioremediation & Toxicology, v.2, n.2, p.58–61, 2014.
SINGH, P.; CARRAHER, C.; SCHWARZBAUER, J.E. Assembly of fibronectin extracellular matrix. Annual Review of Cell and Developmental Biology, v.26, p.397–419, 2010.
THEOCHARIS, A.D.; SKANDALIS, S.S.; GIALELI, C.; KARAMANOS, N.K. Extracellular matrix structure. Advanced Drug Delivery Reviews, v.7, p.4–27, 2016.
VESTWEBER, D. Cadherins in tissue architecture and disease. Journal of Molecular Medicine, v.93, n.1, p.5–11, 2015.
WALKER, R.A. The complexities of breast cancer desmoplasia. Breast Cancer Research, v.3, n.3, p.143–45, 2001.
WILLIAMS, C.M.; ENGLER, A.J.; SLONE, R.D.; GALANTE, L.L.; JEAN, E. Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Research, v.68, n.9, p.3185–92, 2009.
YOKOTA, H.Y.; KUMATA, T.; TAKETABA, S.; KOBAYASHI, T. High expression of 92 kDa type IV collagenase. Biochimica et Biophysica Acta, v.1568, p.7–12, 2001.
YOSHIDA, K.; YOSHIDA, S.; CHOISUNIRACHON, N.; SAITO, T.; MATSUMOTO, K.; SAEKI, K.; MOCHIZUKI, M.; NISHIMURA, R.; SASAKI, M.; NAKAGAWA, T. The relationship between clinicopathological features and expression of epithelial and mesenchymal markers in spontaneous canine mammary gland tumors. Journal of Veterinary Medicine Science, v.76, n.10, p.1321–7, 2014.
ZUCCARI, D.A.P.C.; CASTRO, R.; GELALETI, G.B.; MANCINI, U.M.; Interleukin-8 expression associated with canine mammary tumors. Genetics and Molecular Research, v.10, n.3, p.1522-1532, 2011.