GLUT4 TRANSLOCATION AND ITS IMPLICATIONS ON SWINE MUSCLE TISSUE

Autores

Palavras-chave:

Transportadora de glicose, Iodo, Crescimento muscular, Hormônios da tireoide, Produção animal

Resumo

Este estudo teve como objetivo descrever, através de uma revisão bibliográfica, como o processo do metabolismo de translocação da proteína transportadora de glicose GLUT4 contribui para o desenvolvimento do tecido muscular esquelético através de uma adição de iodo na nutrição, causando a liberação dos hormônios Triiodotironina (T3) e Tiroxina (T4), estimuladores da proteína GLUT4. A síntese destes hormônios consiste no metabolismo de iodo, através do transporte de iodetos extracelulares para as células glandulares e para os folículos da tireoide podendo induzir a ação muscular na espécie suína dos transportadores de glicose GLUT4 que são abundantemente presentes nas membranas celulares dos músculos esquelético e cardíaco, além do tecido adiposo. Para a realização dessa pesquisa, foram utilizados artigos, periódicos e estudos. A proposta dessa pesquisa visou apresentar opções para que o produtor consiga manter a qualidade de seu produto e que esse chegue ao mercado com qualidade e baixo custo de produção. Concluiu-se que, através da indução dos hormônios tireoidianos, pode haver um aumento de hipertrofia muscular pela translocação da GLUT4.

Referências

BARROS, L.S.A.; NUNES, C.C. The influence of physical exercise on insulin-independent glucose uptake. HU Revista, v.45, n.1, p.59-64, 2019.

BISNETA, I.P.S.; BELTRAO, S.S.A.; LIMA, F.L.O.; SILVA, C.D.C.C.; SILVA, M.V.C.M. Physiological changes in glucose uptake by GLUT-4 in Gestacional Diabetes Mellitus. Research, Society and Development, v.9, n.7, p.e857974783, 2020.

BLENNEMANN, B.; MOON, Y.K.; FREAKE, H.C. Tissue-Specific Regulation of Fatty Acid Synthesis by Thyroid Hormone. Endocrinology, v.130, n.2, p.637-643, 1992.

BRENT, G.A. Mechanisms of thyroid hormone action. Journal of the Clinical Investigation, v.122, n.9, p.335-343, 2012.

BRIDI, A.M.; RÜBENSAM, J.M.; NICOLAIEWSKY, S.; LOPES., R.F.; LOBATO, J.F.P. Efeito do genótipo Halotano e de diferentes sistemas de produção na qualidade da carne suína. Revista Brasileira de Zootecnia, v.32, n.6, p.1362-1370, 2003.

BROWN, G.K. Glucose transporter: Structure, function and consequences of deficiency. Journal of Inherited Metabolic Disease, v.23, n.3, p.237-246, 2000.

BRUNETTO, E.L.; TEIXEIRA, S.D.A.; GIANOCCO, G.; MACHADO, U.F.; NUNES, M.T. T3 Rapidly Increases SLC2A4 Gene Expression and GLUT4 Trafficking to the Plasma Membrane in Skeletal Muscle of Rat and Improves Glucose Homeostasis. Thyroid, v.22, n.1, p.70-79, 2012.

BRYANT, N.J.; GOULD, G.W. Insulin stimulated GLUT4 translocation – Size is not everything! Current Opinion in Cell Biology, v.65, n.4, p.28-34, 2020.

BUCCI, M.; VINAGRE, E.C.; CAMPOS, G.E.R.; CURI, R.; PITHON-CURI, T.C. Effects of concurrent training hypertrophy and Endurance on skeletal muscle. Revista Brasileira Ciência e Movimento, v.13, n.1, p.17-28, 2006.

CARVALHEIRA, J.B.C.; ZECCHIN, H.G.; SAAD, M.J.A. Vias de sinalização da insulina. Arquivos Brasileiros de Endocrinologia e Metabologia, v.46, n.4, p.419-425, 2002.

CHANG, L.; CHIANG, S.H.; SALTIEL, A.R. TC10alpha is required for insulin-stimulated glucose uptake in adipocytes. Endocrinology, v.148, n.1, p.27-33, 2007.

CLÉMENT, K.; VIGUERIE, N.; DIEHN, M.; ALIZADEH, A.; BARBE, P.; THALAMAS, C.; STOREY, D.J.; BROWN, P.O.; BARSH, S.G.; LANGIN, D. In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Research, v.12, n.7, p.281-291, 2002.

CORVILAIN, B.; VAN SANDE, J.; DUMONT, J.E. Inhibition by iodide of iodide binding to proteins: the “Wolff-Chaikoff” effect is caused by inhibition of H2O2 generation. Biochemical and Biophysical Research Communications, v.154, n.3, p.1287-1292, 1988.

DAVIS, P.J.; LEONARD, J.L.; DAVIS, F.B. Mechanisms of nongenomic actions of thyroid hormone. Frontiers Neuroendocrinology, v.29, n.2, p.211–218, 2008.

DOHAN, O.; DE LA VIEJA, A. ; PARODER, V.; RIEDEL, C.; ARTANI, M.; REED, M.; GINTER, C.S.; CARRASCO, N. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocrine Reviews, v.24, n.1, p.48-77, 2003.

DOWELL, P.; COOKE, D.W. Olf-1/early B cell factor is a regulator of GLUT4 gene expression in 3T3-L1 adipocytes. Journal of Biological Chemistry, v.277, n.3, p.1712-1718, 2002.

ENG, P.H.; CARDONA, G.R.; FANG, S.L.; PREVITI, M.; ALEX, S.; CARRASCO, N.; CHIN, W.W.; BRAVERMAN, L.E. Escape from acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology, v.140, n.8, p.3404-3410, 1999.

FIALHO F.B. Interpretação da curva de crescimento de Gompertz. Concórdia: Embrapa CNPSA, 1999, 4p. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/ 437170/interpretacao-da-curva-de-crescimento-de-gompertz. Access: 29 jan. 2023.

FILHO, M.R.; ZANGERONIMO, M.G.; LOPES, L.S.; LADEIRA, M.M.; ANDRADE, I. Growth physiology and development of the muscular fabric and its relationship with the quality of the meat in bovine. Revista eletrônica Nutritime, v.8, n.2, p.1431-1443, 2011.

GE, Y.; WU, A.; WARNES, C.; LIU, J.; ZHANG, C.; KAWASOME, H.; TERADA, N.; BOPPART, M.D.; SCHOENHERR, C.J.; CHEN, J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanism. American Journal of Physiology, v.297, n.6, p.1435-1444, 2009.

GOULART-SILVA, F.; GIANNOCCO, G.; SANTOS, M.F.; NUNES, M.T. Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion. Endocrinology, v.147, n.12, p.5777-5785, 2006.

GU, X.; WANG, L.; LIU, S.; SHAN, T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism, article.155379, v.139, n.2, p.1-12, 2023.

HERNANDEZ, R.; TERUEL, T.; LORENZO, M. AKT mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Letters, v.494, n.3, p.225-231, 2001.

ISONG, I.K.; UDIONG, C.E.J.; AKPAN, U.O. Thyroid hormones and glycemic indices in euthyroid, hyperthyroid, hypothyroid, all type 2 diabetics and non-diabetic subjects. Bulletin of the National Research Centre, v.46, n.211, p.1-6, 2022.

KANG, B.B.; CHIANG, B.H. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. Journal of Traditional and Complementary Medicine, v.12, n.2, p.195-205, 2022.

KHODER, N.M.; SAWIE, H.G.; SHARADA, H.M.; HOSNY, E.N.; KHADRAWY, Y.A.; ABDULLA, M.S. Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats. Journal of Diabets & Metabolic Disorders, v.21, n.2, p.1327-1337, 2022.

KNIGHT, J.B.; EYSTER, C.A.; GRIESEL, B.A.; OLSON, A.L. Regulation of the human GLUT4 gene promoter: interaction between a transcriptional activator and myocyte enhancer factor 2A. Biochemistry, v.100, n.25, p.14725-14730, 2003.

KOU, Y.B.; YAN, X.Q.; JING, Q.Y.; ZHANG, S.H.; LIU, Z.Z.; WEI, Y.X.; WANG, Y.G. LIGHT (TNFSF14) inhibits glucose uptake of adipocytes by downregulating GLUT4 expression via AKT signaling pathway. Biochemical and Biophysical Research Communications, v.583, n.17, p.106-113, 2001.

KROOK, A.; WALLBERG-HENRIKSSON, H.; ZIERATH, J.R. Sending the signal: molecular mechanisms regulating glucose uptake. Medicine and Science in Sports Exercise, v.36, n.7, p.1212-1217, 2004.

LARSEM, P.R.; DAVIES, T.F.; SCHLUMBERGER, M.J.; HAY, I.D. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders, 2003. In: LARSEN, P.R.; KRONENBERG, H.M.; MELMED, S.; POLONSKY, KS. Williams’ textbook of Endocrinology. 10. ed. Philadelphia: W.B. Saunders Company, 2003. p.331-73.

LIU, M.L.; GIBBS, E.M.; MCCOID, S.C.; MILICI, A.J.; STUKENBROK, H.A.; MCPHERSON, R.K.; TREADWAY, J.L.; PESSIN, J.E. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proceedings of the National Academy of Sciences of the USA, v.90, n.23, p.11346-11350, 1993.

LIVINGSTONE, R.; BRYANT, N.J.; BOYLE, J.G.; PETRIE, J.R.; GOULD, G.W. Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle. Endocrinology, Diabetes & Metabolism, v.5, n.5, p.e361, 2022.

LOPEZ, D.; NESS, G.C. Characterization of the Rat LDL Receptor 5′-flanking Region. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v.1761, n.4, p.492-500, 2006.

MACHEDA, M.L.; ROGERS, S.; BEST, J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of Cellular Physiology, v.202, n.3, p.654-662, 2005.

MARCHI, S.; PETERGNANI, S.; MISSIROLI, S.; MORCIANO, G.; RIMESSI, A.; WIECKOWSKI, M.R.; GIORGI, C.; PINTON, P. Mitochondrial and endoplamastic reticulum calcium homeostasis and cell death. Cell Calcium, v.69, n.7, p.62-72, 2018.

MEHDI, Y.; DUFRASNE, I. Selenium in Cattle: A Review. Molecules, v.21, n.4, p.545-558, 2016.

MOLKETIN, J.D.; FIRULLI, A.B.; BLACK, A.B.; MARTIN, J.F.; HUSTAD, C.M.; COPELAND, N.; JENKINS, N.; LYONS, G.; OLSON, E.N. MEF2B is a potent trans activator expressed in early myogenic lineages. Molecular and Cellular Biology, v.16, n.7, p.3814-3824, 1996.

MORENO, H.; SERRANO, A.L.; SANTALUCIA, T.; CANTO, C.; BRAND, N.J.; PALACIN, M.; SCHIAFFINO, S.; ZORZANO, A. Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle. Journal of Biological Chemistry, v.278, n.42, p.40557-40564, 2003.

NOFZIEGER, C.; DOSSENA, S.; SUZUKI, S.; IZUHARA, K.; PAULMICHL, M. Pendrin Function in Airway Epithelia. Cellular Physiology and Biochemistry, v.28, n.3, p.71-578, 2011.

NRC. Nutrient Requirements of Domestic Animals. Nutrient Requirements of Beef Cattle. National Academy of Sciences- National Research Council. 7. ed: Washington, D.C, 1996. Available in: https://nap.nationalacademies.org/catalog/9791/nutrient-requirements-of-beef-cattle -seventh-revised-edition-update-2000. Access: 23 nov. 2022.

NUNES, M.T. Hormônios Tiroidianos: Mecanismo de ação e importância biológica. Arquivos Brasileiros de Endocrinologia e Metabologia, v.47, n.6, p.1-5, 2003.

NUNES, M.T.; BIANCO, A.C.; MIGALA, A.; AGOSTINI, B.; HASSELBACH, W. Thyroxine induced transformation in sarcoplasmic reticulum of rabbit soleys and psoas muscles. Zeitschrift für Naturforschung C, v.40, n.9, p.726-734, 1985.

OHANA, E.; YANG, D.; SHCHEYNIKOV, N.; MUALLEM, S. Diverse transport modes by Solute Carrier 26 family of anion transporters. The Journal of Physiology, v.587, n.10, p.2179-2185, 2009.

OLSON, A.L. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Molecular Biology, v.2012, n.1, p.1-12, 2012.

PINTO, W.J.; AREAS, M.A.; MARIALVA, J.E.; CARDOSO S.M.G. Topology of the main proteins involved in thyroid hormone synthesis. Scientia Medica, v.19, n.4, p.192-201, 2009.

PLOW, E.F.; HAAS, T.A.; ZHANG, L.; LOFTUSI, J.; SMITH, J.W. Ligand Binding to Integrins. Journal of Biological Chemistry, v.275, n.29, p.21785-21788, 2000.

REHFELDT, C.; FIEDLER, I.; DIETL, G.; ENDER, K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, v.66, n.2, p.177-188, 2000.

SANTALUCIA, T.; MORENO, H.; PALACIN, M.; YACOUB, M.H.; BRAND, N.J.; ZORZANO, A.A. A novel functional co-operation between MyoD, MEF2 and TRα1 is sufficient for the induction of GLUT4 gene expression. Journal of Molecular Biology, v.314, n.2, p.195-204, 2001.

SANTOS, R.A.; GIANNOCCO, G.; NUNES, M.T. Thyroid hormone stimulates myoglobin expression in soleus and extensorum digitalis longus muscles of rats: Concomitant alterations in the activities of Krebs cycle oxidative enzymes. Thyroid, v.11, n.6, p.545-550, 2001.

SANTOS, J.M.; RIBEIRO, S.B.; GAYA, A.R.; APPELL, H.J.; DUARTE, J.A. Skeletal muscle pathways of contraction-enhanced glucose uptake. International Journal of Sports Medicine, v.29, n.10, p.785-794, 2008.

SEGAL, J.; INGBAR, S.H. Evidence that an increase in cytoplasmic calcium is the initiating event in certain plasma membrane-mediated responses to 3,5,3'-triiodothyronine in rat thymocytes. Endocrinology, v.124, n.4, p.1949-1955, 1989.

SHCHEYNIKOV, N.; YANG, D.; WANG, Y.; ZENG, W.; KARNISKI, L.P.; SO, I.; WALL, S.M.; MUALLEM, S. The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. The Journal of Physiology, v.586, n.16, p.3813-3824, 2008.

SPITZWEG, C.; MORRIS, J.C. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clinical Endocrinology, v.57, n.5, p.559-574, 2002.

SPITZWEG, C.; HEUFELDER, A.E.; MORRIS, J.C. Thyroid Iodine transport. Thyroid, v.10, n.4, p.321-330, 2000.

SUZUKI, K.; KOHN, L.D. Differential regulation of apical and basal iodide transporters in the thyroid by thyroglobulin. Journal of Endocrinology, v.189, n.2, p.247-255, 2006.

TALIOR-VOLODARSKY, I.; RANDHAWA, V.K.; ZAID, H.; KLIP, A. Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. Journal of Biological Chemistry, v.283, n.37, p.25115-25123, 2008.

VAFAI, S.B.; MOOTHA, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature, v.491, n.7422, p.374–383, 2012.

VAISMAN, M.; ROSENTHAL, D.; CARVALHO, D. P. Enzimas envolvidas na organificação tireoidiana do iodo. Arquivos Brasileiros de Endocrinologia & Metabologia, v.48, n.1, p.9-15, 2004.

VOLTARELLI, F.A.; MELLO, M.A.R. Malnutrition: muscle protein metabolism and nutritional recovery associated to the exercise. Motriz: Journal of Physical Education, v.14, n.1, p.74-84, 2008.

WEINSTEIN, S.P.; O’BOYLE, E.; HABER, R.S. Thyroid hormone increase basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes, v.43, n.10, p.1185-1189, 1994.

WILLIAMS, G.R. Cloning and Characterization of Two Novel Thyroid Hormone Receptor b Isoforms. Molecular and Cell Biology, v.20, n.22, p.8329–8342, 2000.

WHO. World Health Organization. Assessment of Iodine Deficiency Disorders and monitoring their elimination. 3. ed. Geneve, 2007. Available in: https://apps.who.int/iris/ handle/10665/43781. Access: 9 nov. 2022.

ZAMONER, A.; PESSOA-PUREUR, R. Nongenomic Actions of Thyroid Hormones: Every why has a Wherefore. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, v.11, n.3, p.1-14, 2011.

ZAMONER, A.; ROYER, C.; BARRETO, K.P.; PESSOA-PUREUR, R.; SILVA, F.R.M.B. Ionic involvement and kinase activity on the mechanism of nongenomic action of thyroid hormones on 45Ca2+ uptake in cerebral cortex from young rats. Neuroscience Research, v.57, n.1, p.98-103, 2007.

ZINMAN, T.; SHNEYVAYS, V.; TRIBULOVA, N.; MANOACH, M.; SHAINBERG, A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. Journal of Cellular Physiology, v.207, n.1, p.220-231, 2006.

ZORZANO, A.; FANDOS, C.; PALACIN, M. Role of plasma membrane transporters in muscle metabolism. Biochemical Journal, v.349, n.3, p.667-688, 2000.

ZORZANO, A.; PALACIN, M.; GUMA, M. Mechanism regulating GLUT4 glucose transporter expression. And glucose transport in skeletal muscle. Acta Physiologica Scandinavica, v.183, n.1, p.43-58, 2005.

Downloads

Publicado

2024-01-05

Como Citar

CHOTOLLI, A. P.; AGOSTINI, L. GLUT4 TRANSLOCATION AND ITS IMPLICATIONS ON SWINE MUSCLE TISSUE. Ciência Animal, [S. l.], v. 33, n. 4, p. 122 a 137, 2024. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/12327. Acesso em: 22 jan. 2025.

Edição

Seção

Artigos de Revisão