GLUT4 TRANSLOCATION AND ITS IMPLICATIONS ON SWINE MUSCLE TISSUE

Autor/innen

Schlagworte:

Glucose transporter, Iodine, Muscle growth, Thyroid hormones, Animal production

Abstract

This study had as objective to describe, through a bibliographic review, of how the GLUT4 glucose-transporter protein’s metabolical process contributes for the skeletal muscular tissue development through the addition of iodine in the nourishment, causing the liberation of the hormones Triiodothyronine (T3) and Thyroxine (T4), stimulators of the GLUT4 protein. The synthesis of these hormones consists of the metabolism of iodine, through the transport of extracellular iodides to the glandular cells and to the thyroid follicles and can induce the muscular action in the swine species of GLUT4 glucose transporters, that are abundantly present in the cellular membranes of skeletal and cardiac muscles, as well as adipose tissue. Articles, periodicals and studies were used to carry out this research. The aim of this research was to present the producer with options to maintain the excellence of his product and to ensure that it reaches the market with quality and low production costs It was concluded that, by inducing thyroid hormones, there could be an increase in muscle hypertrophy through GLUT4 translocation.

Literaturhinweise

BARROS, L.S.A.; NUNES, C.C. The influence of physical exercise on insulin-independent glucose uptake. HU Revista, v.45, n.1, p.59-64, 2019.

BISNETA, I.P.S.; BELTRAO, S.S.A.; LIMA, F.L.O.; SILVA, C.D.C.C.; SILVA, M.V.C.M. Physiological changes in glucose uptake by GLUT-4 in Gestacional Diabetes Mellitus. Research, Society and Development, v.9, n.7, p.e857974783, 2020.

BLENNEMANN, B.; MOON, Y.K.; FREAKE, H.C. Tissue-Specific Regulation of Fatty Acid Synthesis by Thyroid Hormone. Endocrinology, v.130, n.2, p.637-643, 1992.

BRENT, G.A. Mechanisms of thyroid hormone action. Journal of the Clinical Investigation, v.122, n.9, p.335-343, 2012.

BRIDI, A.M.; RÜBENSAM, J.M.; NICOLAIEWSKY, S.; LOPES., R.F.; LOBATO, J.F.P. Efeito do genótipo Halotano e de diferentes sistemas de produção na qualidade da carne suína. Revista Brasileira de Zootecnia, v.32, n.6, p.1362-1370, 2003.

BROWN, G.K. Glucose transporter: Structure, function and consequences of deficiency. Journal of Inherited Metabolic Disease, v.23, n.3, p.237-246, 2000.

BRUNETTO, E.L.; TEIXEIRA, S.D.A.; GIANOCCO, G.; MACHADO, U.F.; NUNES, M.T. T3 Rapidly Increases SLC2A4 Gene Expression and GLUT4 Trafficking to the Plasma Membrane in Skeletal Muscle of Rat and Improves Glucose Homeostasis. Thyroid, v.22, n.1, p.70-79, 2012.

BRYANT, N.J.; GOULD, G.W. Insulin stimulated GLUT4 translocation – Size is not everything! Current Opinion in Cell Biology, v.65, n.4, p.28-34, 2020.

BUCCI, M.; VINAGRE, E.C.; CAMPOS, G.E.R.; CURI, R.; PITHON-CURI, T.C. Effects of concurrent training hypertrophy and Endurance on skeletal muscle. Revista Brasileira Ciência e Movimento, v.13, n.1, p.17-28, 2006.

CARVALHEIRA, J.B.C.; ZECCHIN, H.G.; SAAD, M.J.A. Vias de sinalização da insulina. Arquivos Brasileiros de Endocrinologia e Metabologia, v.46, n.4, p.419-425, 2002.

CHANG, L.; CHIANG, S.H.; SALTIEL, A.R. TC10alpha is required for insulin-stimulated glucose uptake in adipocytes. Endocrinology, v.148, n.1, p.27-33, 2007.

CLÉMENT, K.; VIGUERIE, N.; DIEHN, M.; ALIZADEH, A.; BARBE, P.; THALAMAS, C.; STOREY, D.J.; BROWN, P.O.; BARSH, S.G.; LANGIN, D. In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Research, v.12, n.7, p.281-291, 2002.

CORVILAIN, B.; VAN SANDE, J.; DUMONT, J.E. Inhibition by iodide of iodide binding to proteins: the “Wolff-Chaikoff” effect is caused by inhibition of H2O2 generation. Biochemical and Biophysical Research Communications, v.154, n.3, p.1287-1292, 1988.

DAVIS, P.J.; LEONARD, J.L.; DAVIS, F.B. Mechanisms of nongenomic actions of thyroid hormone. Frontiers Neuroendocrinology, v.29, n.2, p.211–218, 2008.

DOHAN, O.; DE LA VIEJA, A. ; PARODER, V.; RIEDEL, C.; ARTANI, M.; REED, M.; GINTER, C.S.; CARRASCO, N. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocrine Reviews, v.24, n.1, p.48-77, 2003.

DOWELL, P.; COOKE, D.W. Olf-1/early B cell factor is a regulator of GLUT4 gene expression in 3T3-L1 adipocytes. Journal of Biological Chemistry, v.277, n.3, p.1712-1718, 2002.

ENG, P.H.; CARDONA, G.R.; FANG, S.L.; PREVITI, M.; ALEX, S.; CARRASCO, N.; CHIN, W.W.; BRAVERMAN, L.E. Escape from acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology, v.140, n.8, p.3404-3410, 1999.

FIALHO F.B. Interpretação da curva de crescimento de Gompertz. Concórdia: Embrapa CNPSA, 1999, 4p. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/ 437170/interpretacao-da-curva-de-crescimento-de-gompertz. Access: 29 jan. 2023.

FILHO, M.R.; ZANGERONIMO, M.G.; LOPES, L.S.; LADEIRA, M.M.; ANDRADE, I. Growth physiology and development of the muscular fabric and its relationship with the quality of the meat in bovine. Revista eletrônica Nutritime, v.8, n.2, p.1431-1443, 2011.

GE, Y.; WU, A.; WARNES, C.; LIU, J.; ZHANG, C.; KAWASOME, H.; TERADA, N.; BOPPART, M.D.; SCHOENHERR, C.J.; CHEN, J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanism. American Journal of Physiology, v.297, n.6, p.1435-1444, 2009.

GOULART-SILVA, F.; GIANNOCCO, G.; SANTOS, M.F.; NUNES, M.T. Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion. Endocrinology, v.147, n.12, p.5777-5785, 2006.

GU, X.; WANG, L.; LIU, S.; SHAN, T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism, article.155379, v.139, n.2, p.1-12, 2023.

HERNANDEZ, R.; TERUEL, T.; LORENZO, M. AKT mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Letters, v.494, n.3, p.225-231, 2001.

ISONG, I.K.; UDIONG, C.E.J.; AKPAN, U.O. Thyroid hormones and glycemic indices in euthyroid, hyperthyroid, hypothyroid, all type 2 diabetics and non-diabetic subjects. Bulletin of the National Research Centre, v.46, n.211, p.1-6, 2022.

KANG, B.B.; CHIANG, B.H. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. Journal of Traditional and Complementary Medicine, v.12, n.2, p.195-205, 2022.

KHODER, N.M.; SAWIE, H.G.; SHARADA, H.M.; HOSNY, E.N.; KHADRAWY, Y.A.; ABDULLA, M.S. Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats. Journal of Diabets & Metabolic Disorders, v.21, n.2, p.1327-1337, 2022.

KNIGHT, J.B.; EYSTER, C.A.; GRIESEL, B.A.; OLSON, A.L. Regulation of the human GLUT4 gene promoter: interaction between a transcriptional activator and myocyte enhancer factor 2A. Biochemistry, v.100, n.25, p.14725-14730, 2003.

KOU, Y.B.; YAN, X.Q.; JING, Q.Y.; ZHANG, S.H.; LIU, Z.Z.; WEI, Y.X.; WANG, Y.G. LIGHT (TNFSF14) inhibits glucose uptake of adipocytes by downregulating GLUT4 expression via AKT signaling pathway. Biochemical and Biophysical Research Communications, v.583, n.17, p.106-113, 2001.

KROOK, A.; WALLBERG-HENRIKSSON, H.; ZIERATH, J.R. Sending the signal: molecular mechanisms regulating glucose uptake. Medicine and Science in Sports Exercise, v.36, n.7, p.1212-1217, 2004.

LARSEM, P.R.; DAVIES, T.F.; SCHLUMBERGER, M.J.; HAY, I.D. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders, 2003. In: LARSEN, P.R.; KRONENBERG, H.M.; MELMED, S.; POLONSKY, KS. Williams’ textbook of Endocrinology. 10. ed. Philadelphia: W.B. Saunders Company, 2003. p.331-73.

LIU, M.L.; GIBBS, E.M.; MCCOID, S.C.; MILICI, A.J.; STUKENBROK, H.A.; MCPHERSON, R.K.; TREADWAY, J.L.; PESSIN, J.E. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proceedings of the National Academy of Sciences of the USA, v.90, n.23, p.11346-11350, 1993.

LIVINGSTONE, R.; BRYANT, N.J.; BOYLE, J.G.; PETRIE, J.R.; GOULD, G.W. Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle. Endocrinology, Diabetes & Metabolism, v.5, n.5, p.e361, 2022.

LOPEZ, D.; NESS, G.C. Characterization of the Rat LDL Receptor 5′-flanking Region. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v.1761, n.4, p.492-500, 2006.

MACHEDA, M.L.; ROGERS, S.; BEST, J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of Cellular Physiology, v.202, n.3, p.654-662, 2005.

MARCHI, S.; PETERGNANI, S.; MISSIROLI, S.; MORCIANO, G.; RIMESSI, A.; WIECKOWSKI, M.R.; GIORGI, C.; PINTON, P. Mitochondrial and endoplamastic reticulum calcium homeostasis and cell death. Cell Calcium, v.69, n.7, p.62-72, 2018.

MEHDI, Y.; DUFRASNE, I. Selenium in Cattle: A Review. Molecules, v.21, n.4, p.545-558, 2016.

MOLKETIN, J.D.; FIRULLI, A.B.; BLACK, A.B.; MARTIN, J.F.; HUSTAD, C.M.; COPELAND, N.; JENKINS, N.; LYONS, G.; OLSON, E.N. MEF2B is a potent trans activator expressed in early myogenic lineages. Molecular and Cellular Biology, v.16, n.7, p.3814-3824, 1996.

MORENO, H.; SERRANO, A.L.; SANTALUCIA, T.; CANTO, C.; BRAND, N.J.; PALACIN, M.; SCHIAFFINO, S.; ZORZANO, A. Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle. Journal of Biological Chemistry, v.278, n.42, p.40557-40564, 2003.

NOFZIEGER, C.; DOSSENA, S.; SUZUKI, S.; IZUHARA, K.; PAULMICHL, M. Pendrin Function in Airway Epithelia. Cellular Physiology and Biochemistry, v.28, n.3, p.71-578, 2011.

NRC. Nutrient Requirements of Domestic Animals. Nutrient Requirements of Beef Cattle. National Academy of Sciences- National Research Council. 7. ed: Washington, D.C, 1996. Available in: https://nap.nationalacademies.org/catalog/9791/nutrient-requirements-of-beef-cattle -seventh-revised-edition-update-2000. Access: 23 nov. 2022.

NUNES, M.T. Hormônios Tiroidianos: Mecanismo de ação e importância biológica. Arquivos Brasileiros de Endocrinologia e Metabologia, v.47, n.6, p.1-5, 2003.

NUNES, M.T.; BIANCO, A.C.; MIGALA, A.; AGOSTINI, B.; HASSELBACH, W. Thyroxine induced transformation in sarcoplasmic reticulum of rabbit soleys and psoas muscles. Zeitschrift für Naturforschung C, v.40, n.9, p.726-734, 1985.

OHANA, E.; YANG, D.; SHCHEYNIKOV, N.; MUALLEM, S. Diverse transport modes by Solute Carrier 26 family of anion transporters. The Journal of Physiology, v.587, n.10, p.2179-2185, 2009.

OLSON, A.L. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Molecular Biology, v.2012, n.1, p.1-12, 2012.

PINTO, W.J.; AREAS, M.A.; MARIALVA, J.E.; CARDOSO S.M.G. Topology of the main proteins involved in thyroid hormone synthesis. Scientia Medica, v.19, n.4, p.192-201, 2009.

PLOW, E.F.; HAAS, T.A.; ZHANG, L.; LOFTUSI, J.; SMITH, J.W. Ligand Binding to Integrins. Journal of Biological Chemistry, v.275, n.29, p.21785-21788, 2000.

REHFELDT, C.; FIEDLER, I.; DIETL, G.; ENDER, K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, v.66, n.2, p.177-188, 2000.

SANTALUCIA, T.; MORENO, H.; PALACIN, M.; YACOUB, M.H.; BRAND, N.J.; ZORZANO, A.A. A novel functional co-operation between MyoD, MEF2 and TRα1 is sufficient for the induction of GLUT4 gene expression. Journal of Molecular Biology, v.314, n.2, p.195-204, 2001.

SANTOS, R.A.; GIANNOCCO, G.; NUNES, M.T. Thyroid hormone stimulates myoglobin expression in soleus and extensorum digitalis longus muscles of rats: Concomitant alterations in the activities of Krebs cycle oxidative enzymes. Thyroid, v.11, n.6, p.545-550, 2001.

SANTOS, J.M.; RIBEIRO, S.B.; GAYA, A.R.; APPELL, H.J.; DUARTE, J.A. Skeletal muscle pathways of contraction-enhanced glucose uptake. International Journal of Sports Medicine, v.29, n.10, p.785-794, 2008.

SEGAL, J.; INGBAR, S.H. Evidence that an increase in cytoplasmic calcium is the initiating event in certain plasma membrane-mediated responses to 3,5,3'-triiodothyronine in rat thymocytes. Endocrinology, v.124, n.4, p.1949-1955, 1989.

SHCHEYNIKOV, N.; YANG, D.; WANG, Y.; ZENG, W.; KARNISKI, L.P.; SO, I.; WALL, S.M.; MUALLEM, S. The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. The Journal of Physiology, v.586, n.16, p.3813-3824, 2008.

SPITZWEG, C.; MORRIS, J.C. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clinical Endocrinology, v.57, n.5, p.559-574, 2002.

SPITZWEG, C.; HEUFELDER, A.E.; MORRIS, J.C. Thyroid Iodine transport. Thyroid, v.10, n.4, p.321-330, 2000.

SUZUKI, K.; KOHN, L.D. Differential regulation of apical and basal iodide transporters in the thyroid by thyroglobulin. Journal of Endocrinology, v.189, n.2, p.247-255, 2006.

TALIOR-VOLODARSKY, I.; RANDHAWA, V.K.; ZAID, H.; KLIP, A. Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. Journal of Biological Chemistry, v.283, n.37, p.25115-25123, 2008.

VAFAI, S.B.; MOOTHA, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature, v.491, n.7422, p.374–383, 2012.

VAISMAN, M.; ROSENTHAL, D.; CARVALHO, D. P. Enzimas envolvidas na organificação tireoidiana do iodo. Arquivos Brasileiros de Endocrinologia & Metabologia, v.48, n.1, p.9-15, 2004.

VOLTARELLI, F.A.; MELLO, M.A.R. Malnutrition: muscle protein metabolism and nutritional recovery associated to the exercise. Motriz: Journal of Physical Education, v.14, n.1, p.74-84, 2008.

WEINSTEIN, S.P.; O’BOYLE, E.; HABER, R.S. Thyroid hormone increase basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes, v.43, n.10, p.1185-1189, 1994.

WILLIAMS, G.R. Cloning and Characterization of Two Novel Thyroid Hormone Receptor b Isoforms. Molecular and Cell Biology, v.20, n.22, p.8329–8342, 2000.

WHO. World Health Organization. Assessment of Iodine Deficiency Disorders and monitoring their elimination. 3. ed. Geneve, 2007. Available in: https://apps.who.int/iris/ handle/10665/43781. Access: 9 nov. 2022.

ZAMONER, A.; PESSOA-PUREUR, R. Nongenomic Actions of Thyroid Hormones: Every why has a Wherefore. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, v.11, n.3, p.1-14, 2011.

ZAMONER, A.; ROYER, C.; BARRETO, K.P.; PESSOA-PUREUR, R.; SILVA, F.R.M.B. Ionic involvement and kinase activity on the mechanism of nongenomic action of thyroid hormones on 45Ca2+ uptake in cerebral cortex from young rats. Neuroscience Research, v.57, n.1, p.98-103, 2007.

ZINMAN, T.; SHNEYVAYS, V.; TRIBULOVA, N.; MANOACH, M.; SHAINBERG, A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. Journal of Cellular Physiology, v.207, n.1, p.220-231, 2006.

ZORZANO, A.; FANDOS, C.; PALACIN, M. Role of plasma membrane transporters in muscle metabolism. Biochemical Journal, v.349, n.3, p.667-688, 2000.

ZORZANO, A.; PALACIN, M.; GUMA, M. Mechanism regulating GLUT4 glucose transporter expression. And glucose transport in skeletal muscle. Acta Physiologica Scandinavica, v.183, n.1, p.43-58, 2005.

Downloads

Veröffentlicht

2024-01-05

Zitationsvorschlag

CHOTOLLI, A. P.; AGOSTINI, L. GLUT4 TRANSLOCATION AND ITS IMPLICATIONS ON SWINE MUSCLE TISSUE. Ciência Animal, [S. l.], v. 33, n. 4, p. 122 a 137, 2024. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/12327. Acesso em: 11 mai. 2024.

Ausgabe

Rubrik

Artigos de Revisão