ENVOLVIMENTO DA MATRIZ EXTRACELULAR NO TUMOR MAMÁRIO CANINO

Autores

  • Belarmino Eugênio Lopes NETO Programa de Pós-Graduação em Ciências Veterinárias – PPGCV/UECE
  • Virgínia Cláudia Carneiro GIRÃO Faculdade de Veterinária da Universidade Estadual do Ceará (UECE)
  • Diana Célia Sousa Nunes PINHEIRO Programa de Pós-Graduação em Ciências Veterinárias – PPGCV/UECE

Palavras-chave:

Glândula mamária, Matriz extracelular, Microambiente, Tumor mamário canino

Resumo

A glândula mamária (GM) é um tecido dinâmico, derivado da epiderme e o seu desenvolvimento depende da interação entre as células mamárias e o estroma. A matriz extracelular (MEC) representa o principal conteúdo extracelular, responsável pela sustentação do tecido conjuntivo, da membrana basal e serve como reservatório para muitos fatores de crescimento. MEC é constituída por fibras proteicas insolúveis, como colágenos, lamininas, fibronectinas, e polímeros solúveis, como proteoglicanos e glicosaminoglicanos. Essas moléculas que compõem a MEC são importantes, tanto durante a morfogênese da GM, como para a sua manutenção conferindo-lhe a sustentação e o armazenamento de substratos necessários para seu crescimento. A desorganização da MEC na GM pode ser um indício necessário para o início e a progressão do tumor de mama. O Tumor mamário canino (TMC) é referido como um complexo de neoplasias que tem a participação de diversos fatores para seu desenvolvimento, incluindo os componentes da MEC. Desta forma, a investigação da MEC no diagnóstico dos TMC torna-se importante, para estabelecer a correlação entre os seus componentes e as células neoplásicas, além de fornecer informações sobre o comportamento biológico e o estadiamento clínico dos TMC. O entendimento da participação dessas moléculas da MEC para o desenvolvimento do TMC pode favorecer abordagens terapêuticas mais específicas, tendo como alvo elementos da MEC. Portanto, esta revisão tem como foco a participação dos componentes da MEC nos processos que contribuem para o estabelecimento do TMC, o que pode favorecer abordagens terapêuticas que visem elementos da MEC.

Referências

AFRATIS, N.; GIALELI, C.; NIKITOVIC, D.; TSEGENIDIS, T.; KAROUSOU, E.; THEOCHARIS, A.D.; PAVÃO, M.S.; TZANAKAKIS, G.N.; KARAMANOS, N.K. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS Journal, v.279, n.7, p.1177–1197, 2012.

ALBERGARIA, A.; RIBEIRO, A.; VIEIRA, A.; SOUSA, B. P-cadherin role in normal breast development and cancer. International Journal of Developmental Biology, v.55, p.811–822, 2011.

ARAI, K.; UEHARA, K.; NAGAI, Y. Expression of type II and XI collagens in canine mammary complex tumors and demonstration of collagen production of tumor cells in collagen gel culture. Japanese Journal of Cancer Research, v.80, n.9, p.840–847, 1989.

ARAI, K.; NAOI, M.; UEHARA, K. Immunohistochemical examination of neural cell adhesion molecule (NCAM), tenascin and fibronectin on the development of cartilaginous tissue in canine mammary mixed tumors. Japanese Journal of Cancer Research, v.56, n.4, p.809-811, 1994.

ARESU, L.; GIANTIN, M.; MORELLO, E.; VASCELLARI, M.; CASTAGNARO, M.; LOPPARELLI, R.; ZANCANELLA, V.; GRANATO, A.; GARBISA, S.; ARICÒ, A.; BRADASCHIA, A.; MUTINELLI, F.; DACASTO, M. Matrix metalloproteinases and their inhibitors in canine mammary tumors. BMC Veterinary Research, v.7, n.1, p.33, 2011

BARCZYK, M.; CARRACEDO, S.; GULLBERG, D.. Integrins. Cell Tissue Research, v.339, n.1, p.269–80, 2010.

BONNANS, C.; CHOU, J.; WERB, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.786–801, 2014.

CHIQUET-EHRISMANN, R.; CHIQUET, M. Tenascins: regulation and putative functions during pathological stress. Journal of Pathology, v.200, n.4, p.488–499, 2003

CONKLIN, M.W.; KEELY, P.J. Why the stroma matters in breast cancer Insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhesion & Migration, v.6, n.3, p.249-260, 2012.

DAMASCENO, K.A.; BERTAGNOLLI, A.C.; ESTRELA-LIMA, A.; RABELO, B.S.; CAMPOS, L.C.; RIBEIRO, L.G.R.; CASSALI, G.D. Versican expression in myoepithelial cells from carcinomas in canine mixed mammary tumors. The Veterinary Journal, v.200, n.1, p.146–151, 2014.

DAMASCENO, K.A.; BERTAGNOLLI, A.C.; ESTRELA-LIMA, A.; RIBEIRO, L.G.; RABELO, B.S.; CAMPOS, C.B.; BARROS, A.L.B.; CASSALI, G.D. Versican expression in canine carcinomas in benign mixed tumours: is there an association with clinical pathological factors, invasion and overall survival? BMC Veterinary Research, v.8, p.195-203, 2012.

DESGROSELLIER, J.S.; CHERESH, D.A. Integrins in cancer: biological implications and therapeutic opportunities Nature Reviews Cancer, v.10, p.9-22, 2010.

DU, W.W.; YANG, W.; YEE, A.J. Roles of versican in cancer biology - tumorigenesis, progression and metastasis. Histology and Histopathology, v.28, p.701-713, 2013.

EGEBLAD, M.; NAKASONE, E.S.; WERB, Z. Tumors as organs: Complex tissues that interface with the entire organism. Developmental Cell, v.18, p.884-901, 2010.

ERDÉLY, V.A.; DIJK, M.V.; NEDERBRAGT, J.H. Expression of versican in relation to chondrogenesis-related extracelular matrix components in canine mammary tumors. Histochemical Cell Biology, v.124, p.139–149, 2005.

FATA, J.E.; WERB, Z.; BISSELL, M.J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, v.6, p.1–11, 2004.

FAUSTINO, A.M.R.; VAN GARDEREN, E.; SCHALKEN, J.A.; NEDERBRAGT, H. Tenascin expression in normal, hyperplastic, dysplastic and neoplastic canine mammary tissues. Journal of Comparative Pathology, v.126, n.1, p.1–8, 2002.

FERGUSON, H. R. Canine mammary gland tumors. The Veterinary Clinics of North America: Small Animal Practice, v.15, n.3, p.501-511, 1985.

GAMA, A.; PAREDES, J.; GÄRTNER, F.; ALVES, A.; SCHMITT, F. Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumours in relation to clinicopathological parameters, proliferation and survival. The Veterinary Journal, v.77, n.1, p.45–53, 2008.

GAMA, A.; SCHMITT, F. Cadherin cell adhesion system in canine mammary cancer: a review. Veterinary Medicine International, p.1-8, 2012.

GANDHI, N.S.; MANCERA, R.L. The structure of glycosaminoglycans and their Interactions with proteins. Chemichal Biology & Drug Design, v.72, n.6, p.455-482, 2008.

GORDON, M.K.; HAHN, R.A. Collagens. Cell Tissue Research, v.339, p.247–257, 2010.

GUDJONSSON, T.; VILLADSEN, R.; NIELSEN, H.L.; RØNNOV-JESSEN, L.; BISSELL M.J.; PETERSEN, O.W. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes & Development, v.16, p.693–706, 2002.

HALPER, J.; KJAER, M. Progress in heritable soft connective tissue Diseases. Halper J, editor. Dordrecht: Springer Netherlands, p.802, 2014

HANAHAN, D.; WEINBERG, R.A. Hallmarks of cancer: The next generation. Cell, v. 144, n.4, p. 646-674, 2011.

HINRICHS, U.; RUTTEMAN, G.R.; NEDERBRAGT, H. Stromal accumulation of chondroitin sulphate in mammary tumours of dogs. British Journal of Cancer, v.80, p.1359–1365, 1990.

HUMPHREY, J.D.; DUFRESNE, E.R.; SCHWARTZ, M.A. Mechanotransduction and extracellular matrix homeostasis. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.802–812, 2014.

HYNES, R.O. The extracellular matrix: not just pretty fibrils. Science, v.326, p.1216-1219, 2009.

IORIO, V.; TROUGHTON, L.D.; HAMILL, K.J. Laminins: roles and utility in wound repair. Advances in Wound Care, v.4, n.4, p.250–263, 2015.

KASS, L.; ERLER, J.T.; DEMBO, M.; WEAVER, V.M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. International Journal of Biochemical Cell Biology, v.39, n.11, p.1987–1994, 2007.

KAWAI, K.; UETSUKA, K.; DOI, K.; NAKAYAMA, H. The activity of matrix metalloproteinases (MMPs) and tissue tnhibitors of metalloproteinases (TIMPs) in mammary tumors of dogs and rats. Journal of Veterinary Medicine Science, v.68, n.2, p.105–111, 2005.

KIM, C.H. Crawling of effector T cells on extracellular matrix: role of integrins in intersticial mibration in inflamed tissues. Cellular & Molecular Immunology, v.11, p.1-4, 2014.

KLOPFLEISCH R., KLOSE, P.; GRUBER, A.D. The combined expression pattern of BMP2, LTBP4, and DERL1 discriminates malignant from benign canine mammary tumors. Veterinary Pathology, v.47, n.3, p. 446-454, 2010.

KULAR, J.K.; BASU, S.; SHARMA, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, v.5, p.1-7, 2014.

LEY, K.;, LAUDANNA, C.; CYBULSKY, M.I.; NOURSHARGH, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Review Immunology, v.7, n.9, p.678–89, 2007.

LU, P.; WEAVER, V.M.; WERB, Z. The extracellular matrix: a dynamic niche in cancer progression. Journal of Cell Biology, v.196, n.4, p.395–406, 2012.

MARTINS, A.M.; TAMASO, E.; GUERRA, J.L. Retrospective review and systematic study of mammary tumors in dogs and characteristics of the extracellular matrix. Brazilian Journal of Veterinary Research and Animal Science, v.29, n.1, p.38–42, 2002.

MOUW, J.K.; OU, G.; WEAVER, VM. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews: Molecular Cell Biology, v.15, n.12, p.771–85, 2014.

OLIVEIRA FILHO, J.C.; KOMMERS, G.D.; MASUDA, E.K.; MARQUES, B.M.F.P.P.; FIGHERA, R.A.; IRIGOYEN, L.F.; BARROS, C.S.L. Estudo retrospectivo de 1.647 tumores mamários em cães. Pesquisa Veterinária Brasileira, v.30, n.2, p.177-185, 2010.

OREND, G.; CHIQUET-EHRISMANN, R. Tenascin-C induced signaling in cancer. Cancer Letters, v.244, n.2, p.143–63, 2006.

PALTIAN, V.; ALLDINGER, S.; BAUMGÄRTNER, W.; WOHLSEIN, P. Expression of CD44 in canine mammary tumours. Journal of Comparative Pathology, v.141, n.4, p.237–47, 2009.

PANDEY, P.R.; SAIDOU, J.; WATABE, K. Role of myoepithelial cells in breast tumor progression. Frontiers in Bioscience, v.15, p.226–36, 2011.

PAPPARELLA, S.; RESTUCCI, B.; MAIOLINO, P.; DE VICO, G. Immunohistochemical distribution of type IV collagenase in normal, dysplastic and neoplastic canine mammary gland. Journal of Comparative Pathology, v.117, n.3, p.277-82, 1997.

PEÑA, L.; NIETO, A.; PEREZ, MD.; RODRIGUEZ, A.; SANCHES, M.A.; CASTAÑO, M. Expression of fibronectin and its integrin receptor α5β1 in canine mammary tumours. Research in Veterinary Science, v.57, n.3, p.358-64, 1994.

PIEKARZ, C.H.; BIONDO, A.W.; AMORIM, R.L.; RODASKI, S.; BARROS FILHO, I.R.; DE NARDI, A.B. Expressão das caderinas nos tumores mamários em cadelas. Archives of Veterinary Science, v.13, n.1, p.13-21, 2008.

PONTA, H.; SHERMAN, L.; HERLICH, A. CD44: from adhesion molecules to signaling regulators. Molecular Cell Biology, v.4, p.33-45, 2003.

RESTUCCI, B.; DE VICO, G.; MAIOLINO, P. Expression of β-integrin in normal, dysplastic and neoplastic canine mammary gland. Journal of Comparative Pathology, v.113, n.2, p.165-173, 1995.

RESTUCCI, B.; MAIOLINO, P.; MARTANO, M.; ESPOSITO, G.; FILIPPIS, D.; BORZACCHIELLO, G.; MUZIO, L. Expression of β-catenin, E-cadherin and APC in canine mammary tumors. Anticancer Research, v.27, n.5A, p.3083-3089, 2007.

ROZARIO, T.; DESIMONE, D.W. The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, v.341, p.126–140, 2010.

SALMI, M.; JALKANEM, S. Cell-surface enzymes in control of leukocyte trafficking. Nature Review in Immunology, v.5, p. 760-771, 2005.

SAKAKURA, T.; ISHIHARA, A.; YATANI, R. Tenascin in mammary gland development: from embryogenesis to carcinogenesis. Cancer Treat Research, v.53, p.383-400, 1991.

SANTOS, A.; LOPES, C.; FRIAS, C.; AMORIM, I.; VICENTE, C.; GÄRTNER, F.; MATOS, A. Immunohistochemical evaluation of MMP-2 and TIMP-2 in canine mammary tumours: a survival study. The Veterinary Journal, v.190, n.3, p.396–402, 2011.

SCHEDIN, P.; KEELY, P.J. Mechanosignaling in Normal Development and Tumor Progression. Cold Spring Harbor Perspectives in Biology, v.3, p.1–22, 2011.

SHAM, M.M.; AZMI, N.S.; HASBI, M.; RAHIM, A.; PAHANG, D.M. Review : Glycosaminoglycans (GAGs) versus Cancer. Journal Environmental Bioremediation & Toxicology, v.2, n.2, p.58–61, 2014.

SINGH, P.; CARRAHER, C.; SCHWARZBAUER, J.E. Assembly of fibronectin extracellular matrix. Annual Review of Cell and Developmental Biology, v.26, p.397–419, 2010.

THEOCHARIS, A.D.; SKANDALIS, S.S.; GIALELI, C.; KARAMANOS, N.K. Extracellular matrix structure. Advanced Drug Delivery Reviews, v.7, p.4–27, 2016.

VESTWEBER, D. Cadherins in tissue architecture and disease. Journal of Molecular Medicine, v.93, n.1, p.5–11, 2015.

WALKER, R.A. The complexities of breast cancer desmoplasia. Breast Cancer Research, v.3, n.3, p.143–45, 2001.

WILLIAMS, C.M.; ENGLER, A.J.; SLONE, R.D.; GALANTE, L.L.; JEAN, E. Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Research, v.68, n.9, p.3185–92, 2009.

YOKOTA, H.Y.; KUMATA, T.; TAKETABA, S.; KOBAYASHI, T. High expression of 92 kDa type IV collagenase. Biochimica et Biophysica Acta, v.1568, p.7–12, 2001.

YOSHIDA, K.; YOSHIDA, S.; CHOISUNIRACHON, N.; SAITO, T.; MATSUMOTO, K.; SAEKI, K.; MOCHIZUKI, M.; NISHIMURA, R.; SASAKI, M.; NAKAGAWA, T. The relationship between clinicopathological features and expression of epithelial and mesenchymal markers in spontaneous canine mammary gland tumors. Journal of Veterinary Medicine Science, v.76, n.10, p.1321–7, 2014.

ZUCCARI, D.A.P.C.; CASTRO, R.; GELALETI, G.B.; MANCINI, U.M.; Interleukin-8 expression associated with canine mammary tumors. Genetics and Molecular Research, v.10, n.3, p.1522-1532, 2011.

Downloads

Publicado

2023-10-28

Como Citar

NETO, B. E. L.; GIRÃO, V. C. C.; PINHEIRO, D. C. S. N. ENVOLVIMENTO DA MATRIZ EXTRACELULAR NO TUMOR MAMÁRIO CANINO. Ciência Animal, [S. l.], v. 27, n. 3, p. 48–63, 2023. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/11748. Acesso em: 22 jan. 2025.

Edição

Seção

Artigos de Revisão