Hyperlipid diet induces NAFLD associated liver damage without redox imbalance in Swiss mice liver

Authors

  • Paula Alexandre de FREITAS Programa de Pós-Graduação em Ciências Fisiológicas (UECE)
  • Keciany Alves de OLIVEIRA Mestrado Acadêmico em Nutrição e Saúde (UECE)
  • Marcos Aurélio de Sousa LIMA Programa de Pós-Graduação em Ciências Fisiológicas (UECE)
  • Neucilane Silveira dos SANTOS Curso de Nutrição (UECE)
  • Pedro Marcos Gomes SOARES Programa de Pós-Graduação em Ciências Fisiológicas (UECE)
  • Luciana Catunda BRITO Instituto de Educação Física e Esportes (UFC)
  • Ariclécio Cunha de OLIVEIRA Programa de Pós-Graduação em Ciências Fisiológicas (UECE)

Keywords:

Fatty liver disease, Hyperlipid diet, Redox imbalance, Mice

Abstract

Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease strongly associated with redox imbalance and loss of glycemic homeostasis. The development of in vivo models that mimics its pathophysiological characteristics is essential for the discovery and development of therapeutic strategies. To validate a NAFLD model associated with redox imbalance and low-fat diet-induced glucose intolerance and easily reproducible. Sixteen Swiss mice received a high fat diet for 10 weeks. Throughout the experiment, body weight, glucose tolerance, oxidative stress markers and liver morphology were evaluated. The hyperlipid diet promoted a significant increase in triglyceride levels (p<0.05) and liver tissue weight (p<0.01), in addition to severe inflammation, necrosis and steatosis of hepatocytes. The animals that followed the hyperlipidic diet (HD) still had a lower glucose tolerance (p<0.05), however it did not show reduction of thiol groups. The HD-induced NAFLD model was associated with liver histological damage and glucose intolerance, however it did not present redox imbalance, being an unfeasible model for studies with antioxidant treatments. The study aimed to validate a model of NAFLD induced by a high-fat diet associated with changes in the glycemic response and without changes in redox homeostasis in mice.

References

AEBI, H. Catalase in vitro. In: Methods in Enzymology. Academic Press, v.105, p.121-126, 1984.

AHMED, M. Non-alcoholic fatty liver disease in 2015. World Journal of Hepatology. v.7, n.11, p.1450-1459, 2015.

ÂNGELO, P.M.D. Nonalcoholic fatty liver disease. New England Journal of Medicine, v.346, n.16, p.1221–1231, 2002.

BAGCI, R.; SAHINTURK, V.; SAHIN, E. Azoramide ameliorates fructose-induced nonalcoholic fatty liver disease in mice. Tissue and Cell, v.59, p.62-69, 2019.

BENEDICT, M.; ZHANG, X. Non-alcoholic fatty liver disease: An expanded review. World Journal of Hepatology, v.9, n.16, p.715-732, 2017.

BUZZETTI, E.; PINZANI, M.; TSOCHATZIS, E.A. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolismo, v.65, n.8, p.1038-1048, 2016.

DENG, Q.G.; SHE, H.; CHENG, J.H.; FRENCH, S.W.; KOOP, D.R.; XIONG, S.; TSUKAMOTO, H. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology, v.42, n.4, p.905-914, 2005.

FABBRINI, E.; SULLIVAN, S.; KLEIN, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology, v.51, n.2, p.679-89, 2010.

HE, C.; GUO, X.; FAN, J.; XU, Z. Different dietary contribution to hepatic inflammatory and lipogenic factor mRNA expression. International Journal of Clinical and Experimental Medicine, v.10, n.1, p.325-333, 2017.

ITO, M., SUZUKI, J., TSUJIOKA, S., SASAKI, M., GOMORI, A., SHIRAKURA, T.; HIROSE, H.; ITO, M.; ISHIHARA, A.; IWAASA. H.; KANATANI, A. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatology Research, v.37, n.1, p.50-57, 2007.

KLEINER, D.E.; BRUNT, E.M.; VAN, N.M.; BEHLING, C.; CONTOS, M.J.; CUMMINGS, O.W.; FERRELL, L.D.; LIU, Y.C.; TORBENSON, M.S.; UNALP-ARIDA, A.; YEH, M.; MCCULLOUGH, A.J.; SANYAL, A.J. Nonalcoholic Steatohepatitis Clinical Research Network Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, v.41, n.6, p.1313-1321, 2005.

KNEEMAN, J.M.; LEGHI, G.E.; DOMENICI, F.A.; VANNUCCHI, H. Influence of oxidative stress and obesity in patients with nonalcoholic steatohepatitis. Arquivos de Gastroenterologia, v.52, n.3, p.228-233, 2015.

LIEBER, C.S.; LEO, M.A.; MAK, K.M.; XU, Y.; CAO, Q.I.; REN, C.; PONOMARENKO, A.; DECARLI, L. M. Model of nonalcoholic steatohepatitis. The American Journal of Clinical Nutrition, v.79, n.3, p.502-509, 2004.

MACHADO, M.V.; CORTEZ, P.H. Non-alcoholic fatty liver disease: What the clinician needs to know. World Journal of Gastroenterology, v.20, n.36, p.12956-12980, 2014.

MARCIANO, R.C.; URIAS, G.M.P.C.; CARVALHO, C. Esteatose hepática em ratos com obesidade induzida. Revista Ciência e Saúde On-line, v.2, v.3, p.19-24, 2017.

MIRANDA, J.; ESEBERRI, I.; LASA, A.; PORTILLO, M.P. Lipid metabolism in adipose tissue and liver from diet-induced obese rats: a comparison between Wistar and Sprague-Dawley strains. Journal of Physiology and Biochemistry, v.74, n.4, p.655-666, 2018.

MOURA, L.P.; DALIA, R.A.; ARAÚJO, M.B.; SPONTON, A.C.S.; PAULI, J.R.; MOURA, R.F.; MELLO, M.A.R. Alterações bioquímicas e hepáticas em ratos submetidos à uma dieta hiperlipídica/hiperenergética. Revista de Nutrição, v.25, n.6, p.685-693, 2012.

NIE, J.; LI, C.; LI, J.; CHEN, X.; ZHONG, X. Analysis of non alcoholic fatty liver disease microRNA expression spectra in rat liver tissues. Molecular Medicine Reports., v.18, n.3, p.2669-2680, 2018.

PATEL, V.; SANYAL, A.J.; STERLING, R. Clinical presentation and patient evaluation in nonalcoholic fatty liver disease. Clinics in Liver Disease, v.20, n.2, p.277-292, 2016.

KIRSCH, R.; CLARKSON, V.; SHEPHARD, E.G.; MARAIS, D.A.; JAFFER, V.E.; WOODBURNE, R.E.; HALL, P.D.L.M. Rodent nutritional model of non‐alcoholic steatohepatitis: species, strain and sex difference studies. Journal of Gastroenterology and Hepatology, v.18, n.11, p.1272-1282, 2003.

RANGNEKAR, A.S.; LAMMERT, F.; IGOLNIKOV, A.; GREEN, R.M. Quantitative trait loci analysis of mice administered the methionine–choline deficient dietary model of experimental steatohepatitis. Liver International, v.26, n.8, p.1000-1005, 2006.

WANG, R.S.; OLDHAM, W.M.; MARON, B.A.; LOSCALZO, J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxidants & Redox Signaling, v.29, n.10, p.953-972, 2018.

WHITE, P.A.S.; CERCATO, L.M.; ARAÚJO, J.M.D.; SOUZA, L.A.; SOARES, A.F.; BARBOSA, A.P.O.; NETO, J.M.R.; MARÇAL, A.C.; MACHADO, U.F.; CAMARGO, E.A.; SANTOS, M.R.V.; BRITO, L.C. Modelo de obesidade induzida por dieta hiperlipídica e associada à resistência à ação da insulina e intolerância a glicose. Arquivo Brasileiro de Endocrinologia e Metabolismo, v.57, n.5, p.339-45, 2013.

ŻENDZIAN-PIOTROWSKI, M.; LUKASZUK, B.; MACIEJCZYK, M.; OSTROWSKA, L.; ZALEWSKA, A.; CHABOWSKI, A.; KUREK, K. High-fat, high-protein and high-carbohydrate diet affect sphingolipid profile in pancreatic steatosis in wistar rats. Nutrition, v.11, n.60, p.197-205, 2018.

ZHU, C.; LIU, Y.; WANG, H.; WANG, B.; QU, H.; WANG, B.; ZHU, M. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model. Endocrine Journal, v.64, n.7, p.663-673, 2017.

Published

2022-11-25

How to Cite

FREITAS, P. A. de .; OLIVEIRA, K. A. de .; LIMA, M. A. . de S.; SANTOS, N. S. dos .; SOARES, P. M. G. .; BRITO, L. C. .; OLIVEIRA, A. C. de . Hyperlipid diet induces NAFLD associated liver damage without redox imbalance in Swiss mice liver. Ciência Animal, [S. l.], v. 30, n. 3, p. 23–35, 2022. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/9719. Acesso em: 22 dec. 2024.

Issue

Section

Artigos Originais