Sexual determination and differentiation in teleost fish:
the role of environmental and genetic factors
Keywords:
Gonadal differentiation, reproduction, sex chromosomesAbstract
Teleost fish have various forms of sexual determination and differentiation. Genetic and environmental factors can interact to determine sex and act on the differentiation of the gonads of these animals. Environmental factors act in different ways to determine the sex of the fish, as their action depend on the species. Factors such as temperature, pH, population density and pollution can cause a masculinization or a feminization, by acting on the hormones and, often, the ovarian apoptosis. The genetic determination is given by the sexual chromosome (monogenic system) or by the autosomal action (polygenic system). In the monogenic system several models of sexual chromosomes were observed, the main ones being XX / XY (heterogeneous males) and ZW / ZZ (heterogeneous females). With this, it is possible to observe that teleost possess a great amplitude of sexual determination and gonadal differentiation.
References
ABOZAID, H.; WESSELS, S.; HÖRSTGEN-SCHWARK, G. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio). Sexual Development, v.5, n.5, p.259–265, 2011.
ABOZAID, H.; WESSELS, S.; HÖRSTGEN-SCHWARK, G. Elevated temperature applied during gonadal transformation leads to male bias in zebrafish (Danio rerio). Sexual Development, v.6, n.4, p.201–209, 2012.
ALMEIDA, F.L. Endocrinologia aplicada na reprodução de peixes. Revista Brasileira de Reprodução Animal, v.37, n.2, p.174–180, 2013.
BAROILLER, J.F.; GUIGUEN, Y.; FOSTIER, A. Endocrine and environmental aspects of sex differentiation in fish. Cell and Molecular Life Sciences, v.5, N.6-7, p.910–931, 1999.
BAROILLER, J.F.; D'COTTA, H. Environment and sex determination in farmed fish. Comparative Biochemistry Physiology - Part C: Toxicology & Pharmacology, v.130, n.4, p.399–409, 2001.
BAROILLER, J.F.; D'COTTA, H.; BEZAULT, E.; WESSELS, S.; HOERSTGEN-SCHWARK, G. Tilapia sex determination: where temperature and genetics meet. Comparative Biochemistry and Physiology Part - A: Molecular & Integrative Physiology, v.153, n.1, p.30–38, 2009.
BAROILLER, J.F.; D'COTTA, H. The reversible sex of gonochoristic fish: insights and consequences. Sex Development, v.10, n.5-6, p.242–266, 2016.
BAUMANN, L.; HOLBECH, H.; KEITER, S.; KINNBERG, K.L.; KNÖRR, S.; NAGEL, T.; BRAUNBECK, T. The maturity index as a tool to facilitate the interpretation of changes in vitellogenin production and sex ratio in the Fish Sexual Development Test. Aquatic Toxicology, v.128, p.34–42, 2013.
BEARDMORE, J.A.; MAIR, G.C.; LEWIS, R.I. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture, v.197, n.1, p.283–301, 2001.
BROWN, E.E.; BAUMANN, H.; CONOVER, D.O. Temperature and photoperiod effects on sex determination in a fish. Journal of experimental marine biology and ecology, v.461, p.39–43, 2014.
BROWN, A. R.; OWEN, S.F.; PETERS, J.; ZHANG, Y.; SOFFKER, M.; PAULL, G.C.; KOSKEN, D.J.; WAHAB, M.A.; TYLER, C.R. Climate change and pollution speed declines in zebrafish populations. Proceedings of the National Academy of Sciences, v.112, n.11, p.1237–1246, 2015.
BUDD, A.; BANH, Q.; DOMINGOS, J.A.; JERRY, D.R. Sex control in fish: approaches, challenges and opportunities for aquaculture. Journal of Marine Science, v.3, p.329-355, 2015.
BULL, J.J. Sex determining mechanisms: an evolutionary perspective. Experientia, v.41, n.10, p.1285–1296,1985.
DAI, R.; AHMED, S.A. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Therapeutics and Clinical Risk Management, v.10, p.151–163, 2014.
DAVEY, A.J.H.; JELLYMAN, D.J. Sex determination in freshwater eels and management options for manipulation of sex. Reviews in fish biology and fisheries, v. 15, n. 1-2, p. 37-52, 2005.
DAVIDSON, W.S.; HUANG, T.K.; FUJIKI, K.R.; VON SCHALBURG, K.R.; KOOP, B.F. The sex determining loci and sex chromosomes in the Family Salmonidae. Sex Development, v.3, n.2-3, p.78–87, 2009.
DEAN, R.; MANK, J.E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. Journal of Evolutionary Biology, v.27, n.7, p.1443–1453, 2014.
DESPREZ, D.; MÉLARD, C.; HOAREAU, M.C.; BELLEMÈNE, Y.; BOSC, P.; BAROILLER, J.F. Inheritance of sex in two ZZ pseudofemale lines of tilapia Oreochromis aureus. Aquaculture, v.218, n.1-4, p.131–140, 2003.
DEVLIN, R.H.; NAGAHAMA, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, v.208, n.3-4, p.191–364, 2002.
EISBRENNER, W.D. Sex determination in Tasmanian Atlantic salmon. 2013. 77p. Tese – Science: Department of Molecular Biology and Biochemistry, Simon Fraser University, 2013.
ESHEL, O.; SHIRAK, A.; DOR, L.; BAND, M.; ZAK, T.; MARKOVICH-GORDON, M.; CHALIFA-CASPI, V.; FELDMESSER, E.; WELLER, J, I.; SEROUSSI, E.; HULATA, G.; RON, M. Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics, v.15, n.1 p.774, 2014.
FENG, X.; YU, X.; FU, B.; WANG, X.; LIU, H.; PANG, M.; TONG, J. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC genomics, v.19, n.230, p.1-13, 2018.
FERNANDINO, J.I.; HATTORI, R.S.; KISHI, A.; STRÜSSMANN, C.A.; SOMOZA, G.M. The cortisol and androgen pathways cross talk in high-temperature induced masculinization: 11b-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology, v.153, n.12, p.6003–6011, 2012.
FERNANDINO, J.I.; HATTORI, R.S.; ACOSTA, O.D.M.; STRÜSSMANN, C.A.; SOMOZA, G.M. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. General and Comparative Endocrinology, v.192, p.36–44, 2013.
GUERRERO-ESTÉVEZ, S.; MORENO-MENDOZA, N. Sexual determination and differentiation in teleost fish. Review in Fish Biology and Fisheries, v.20, n.1, p.101–121, 2010.
GODWIN, J.; LUCKENBACH, J.A.; BORSKI, R.J. Ecology meets endocrinology: environmental sex determination in fishes. Evolution & Development, v.5, p.40–49, 2003.
GU, Y.; ZHANG, L.; CHEN, X. Differential expression analysis of Paralichthys olivaceus microRNAs in adult ovary and testis by deep sequencing.General and comparative endocrinology, v.204, p.181–184, 2014.
HATTORI, R.S.; FERNANDINO, J.I.; KISHII, A.; KIMURA, H.; KINNO, T.; OURA, M.; SOMOZA, G.M.; YOKOTA, M.; STRÜSSMANN, C.A.; WATANABE, S. Cortisol-induced masculinization: does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS One, v.4, n.8, p.6548, 2009.
HEULE, C.; SALZBURGER, W.; BOHNE, A. Genetics of sexual development: an evolutionary playground for fish. Genetics, v.196, n.3, p.579–591, 2004.
JIA, Y.H.; HUANG, H.Z.; LI, Q.Q.; ZHANG, Q.Y. Growth and seasonal changes of sex steroids level and gonad development in female and male Pseudobagrus ussuriensis. Marine Science, v.36, n.3, p.61–66, 2012.
IJIRI, S.; KANEKO, H.; KOBAYASHI, T.; WANG, D-S.; SAKAI, F.; PAUL-PRASANTH, B.; NAKAMURA, M.; NAGAHAMA, Y. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biology of Reproduction, v.78, n.2, p.333–341, 2008.
KITANO, T.; HAYASHI, Y.; SHIRAISHI, E.; KAMEI, Y. Estrogen rescues masculinization of genetically female medaka by exposure to cortisol or high temperature. Molecular Reproduction and Development, v.79, p.719–726, 2012.
KOOPMAN, P. The genetics and biology of vertebrate sex determination. Cell, v.105, n.7, p.843–847, 2001.
LAWRENCE, C.; EBERSOLE, J.P.; KESSELI, R.V. Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Environmental Biology of Fishes, v.81, n.2, p.239–246, 2008.
LEINONEN, T.; CANO, J.M.; MERILA, J. Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus. Heredity, v.106, n.2, p.218–227, 2011.
LIEW, W.C.; BARTFAI, R.; LIM, Z.; SREENIVASAN, R.; SIEGFRIED, K.R.; ORBAN, L. Polygenic sex determination system in zebrafish. PLoS One, v.7, n.4, p.34397, 2012.
LUZIO, A.; MATOS, M.; SANTOS, D.; FONTAÍNHAS-FERNANDES, A.A.; MONTEIRO, S.M.; COIMBRA, A.M. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures. Aquatic Toxicology, v.177, p.269–284, 2016.
MISHIMA, T.; TAKIZAWA, T.; LUO, S.S.; ISHIBASHI, O.; KAWAHIGASHI, Y.; MIZUGUCHI, Y.; ISHIKAWA, T.; MORI, M.; KANDA, T.; GOTO, T.; TAKIZAWA, T. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction, v.136, n.6, p.811–822, 2008.
MUNDAY, P.L.; BUSTON, P.M.; WARNER, R.R. Diversity and flexibility of sex changes strategies in animals. Trends in Ecology & Evolution, v.21, n.2, p.89–95, 2006.
MUNDAY, P.L.; WHITE, J.W.; WARNER, R.R. A social basis for the development of primary males in a sex changing fish. Proceedings of the Royal Society of London B, v.273, n.1603, p.2845–2851, 2006.
NAGAHAMA, Y.; KOBAYASHI, T.; MATSUDA. M. Sex determination, gonadal sex differentiation and sex change in fish. Tanpakushitsu Kakusan Koso. Protein, nucleic acid, enzyme, v.49, n.2, p.116–123, 2004.
OSPINA-ÁLVAREZ, N.; PIFERRER, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One, v.3, n.7, p.2837, 2008.
PROTNER, H.O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology A, v.132, n.4, p.739–761, 2002.
QIU, W.; ZHU, Y.; WU, Y. Identification and expression analysis of microRNAs in medaka gonads. Gene, v.646, p.210–216, 2018.
RIBAS, L.; LIEW, W.C.; DÍAZ, N.; SREENIVASAN, R.; ORBÁN, L.; PIFERRER, F. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. Proceedings of the National Academy Sciences U. S. A, v.114, n.6, p.941-950, 2017.
RIBAS, L.; VALDIVIESO, A.; DÍAZ, N. Appropriate rearing density in domesticated zebrafish to avoid unwanted masculinization: links with the stress response. Journal of Experimental Biology, v.220, n.6, p.1056–1064, 2017.
SANTOS, D.; LUZIO, A.; COIMBRA, A.M. Zebrafish sex differentiation and gonad development: A review on the impact of environmental factors. Aquatic toxicology, v.191, p.141–163, 2017.
SCHARTL, M. Sex chromosome evolution in nonmammalian vertebrates. Current Opinion in Genetics and Development, v.14, n.6, p.634–641, 2004.
SCHOLZ, S.; MAYER, L. Molecular biomarkers of endocrine disruption in small model fish. Molecular and Cell Endocrinology, v.293, n.1-2, p.57–70, 2008.
SHANG, E.H.; YU, R.M.; WU, R.S. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environmental Science & Technology, v.40, n.9, p.3118–3122, 2006.
SIOMI, H.; SIOMI, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Molecular Cell, v.38, n.3, p.323–332, 2010.
STELKEN, R.B.; WEDEKIND, C. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Molecular Ecology, v.19, n.4, p.627–646, 2010.
TORLEY, K.J.; DA SILVEIRA, J.C.; SMITH, P.; ANTHONY, R.V.; VEERAMACHANENI, D.R.; WINGER, Q.A.; BOUMA, G.J. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive Biology and Endocrinology, v.9, n.1, p.2, 2011.
UCHIDA, D.; YAMASHITA, M.; KITANO, T.; IGUCHI, T. An aromatase inhibitor or high-water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v.137, n.1, p.11–20, 2004.
WANG, D.; MAO, H.L.; CHEN, H.X. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Animal Genetics, v.40, n.6, p.978–981, 2009.
WANG, W.; LIU, W.; LIU. Coordinated microRNA and messenger RNA expression profiles for understanding sexual dimorphism of gonads and the potential roles of microRNA in the steroidogenesis pathway in Nile tilapia (Oreochromis niloticus). Theriogenology, v.85, n.5, p.970–978, 2016.
WILSON, C.A.; HIGH, S.K.; MCCLUSKEY B.M.; AMORES, A.; YAN, Y-L.; TITUS, T.A.; ANDERSON, J.L.; BATZEL, P.; CARVAN, M.J.; SCHARTL, M.; POSTLETHWAIT, J.H. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics, v.198, n.3, p.1291–1308, 2014.
WILHELM, D.; PALMER, S.; KOOPMAN, P. Sex determination and gonadal development in mammals. Physiological Review, v.87, n.1, p.1–28, 2007.
VALENZUELA, N.; ADAMS, D.C.; JAZEN, F.J. Pattern does not equal process: Exactly when is sex environmentally determined? The American Naturalist, v.161, p.676–683, 2003.
VALENZUELA, N.; LANCE, V. Temperature-dependent sex determination in vertebrates. 1a ed., Washington DC: Smithsonian Institution, 2004. 194p.
VOLFF, J.N.; SCHARTL, M. Variability of genetic sex determination in poeciliid fishes. Genetica, v.111, n.1-3, p.101–110, 2001.
VOLFF, J.N.; NANDA, I.; SCHIMD, M.; SCHARTI, M. Governing Sex Determination in Fish: Regulatory Putsches and Ephemeral Dictators. Sexual Development, v.1, n.2, p.85–99, 2007
XU, G.; HUANG, T.; JIN, X.; CUI, C.; LI, D.; SUN, C.; HAN, Y.; MU, Z. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss). Fish physiology and biochemistry, v.42, n.1, p.193–202, 2016.
YAMAGUCHI, T.; YOSHINAGA, N.; YAZAWA, T.; GEN, K.; KITANO, T. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology, v.151, n.8, p.3900–3908, 2010.
YAMAMOTO, T. Sex differentiation. In: HOAR, W.S.; RANDALL, D.J. Fish Physiology, Reproduction and Growth, Bioluminescence, Pigments, and Poisons. 1a ed., New York: Academic, 1969. p.117-175.