Improving the effectiveness of florfenicol in the treatment of caprine pneumonia by Pasteurella multocida and Mannheimia haemolytica
Keywords:
Antibiotic therapy, bacterial infection, individualized medicineAbstract
The objective of the present work is to evaluate the efficacy of the treatment of florfenicol in the traditional dose of 20mg/kg administered intramuscularly and intravenously, in the treatment of pneumonia by Pasteurella multocida and Mannheimia haemolytica, using pharmacokinetic / pharmacodynamic modeling (PK/PD). A Monte Carlo simulation of the pharmacokinetic and pharmacodynamic parameters was carried out, and then the PK / PD modeling was performed to determine the efficacy rates in the treatment of this bacterial infection, according to the minimum inhibitory concentration (MIC) value of the bacteria, considering the range of 0.125 - 4μg/mL. Through the intramuscular route, the probability of reaching the bacteriological eradication rate was 100%, with the MIC up to 0.25μg/mL; bactericidal effect of 100% with MIC up to 0.5μg/mL and bacteriostatic effect of 100% with MIC up to 1μg/mL. Intravenously, the probability of bacteriological eradication was 100% with MIC up to 0.5μg/mL and bacteriostatic effect with probabilities of 100% and 83% with MICs of 2 and 4μg/mL, respectively. Treatment with florfenicol at a dose of 20mg/kg, intramuscularly, decreased significantly for infections caused by microorganisms with MIC greater than 0.5μg/mL, however, intravenously the antibacterial effects were efficient for MICs larger than those of 2 and 4μg/mL (p<0.01). This study highlights the need to incorporate bacteriological isolation into the therapeutic protocol and take into account the route of administration in order to optimize the traditional dose in order to avoid flaws in antimicrobial therapy, enhancing microbial resistance
References
ABBIATI, R.A.; CAGNARDI, P.; RAVASIO, G.; VILLA, R.; MANCA, D.A physiologically based model for tramadol pharmacokinetics in horses. Journal of Theoretical Biology, v.429, n.1, p.46-51, 2017.
ABDELRAOUF, K.; LINDER, K.E.; NAILOR, M.D.; NICOLAU, D.P. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: part II gram-negative bacteria, Expert Opinion on Drug Metabolism & Toxicology, v.13, n.7, p.705-714, 2017.
AHMAD, I.; HAO, H.; HUANG, L.; SANDERS, P.; WANG, X.; CHEN, D.; TAO, Y.; XIE, S.; XIUHUA, K.; LI, J.; DAN, W.; YUAN, Z. Integration of PK/PD for dose optimization of Cefquinome against Staphylococcus aureus causing septicemia in cattle. Frontiers in Microbiology, v.6, n.2, p.588-599, 2015.
AHMAD, I.; HUANG, L.; HAO, H.; SANDERS, P.; YUAN, Z. Application of PK/PD modeling in veterinary field: dose optimization and drug resistance prediction. BioMed Research International, v.2016, n.2, p.1-12, 2016.
ATEF, M.; EL-GENDI, A.Y.; AMER, A.M.; ABD EL-ATY, A.M. Disposition kinetics of florfenicol in goats by using two analytical methods. Journal of Veterinary Medicine Series A, v.48, n.3, p.129-136, 2000.
BERGE, A.C.B.; SISCHO, W.M.; CRAIGMILL, A.L. Antimicrobial susceptibility patterns of respiratory tract pathogens from sheep and goats. Journal of the American Veterinary Medical Association, v.229, n.8, p.1279-1281, 2006.
BHARDWAJ, P.; SIDHU, P.K.; LONARE, M.K.; KAUR, R.; DUMKA, V.K.; RAMPAL, S. Pharmacokinetic-pharmacodynamic integration of marbofloxacin after single and repeated intravenous administration in goats. Research in Veterinary Science, v.121, n.5, p.111-115, 2018.
BLOT, S.; LIPMAN, J.; ROBERTS, D.M.; ROBERTS, J.A. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary? Diagnostic Microbiology and Infectious Disease, v.79, n.1, p.77-84, 2017.
BOOTHE, D.M.; HARRY, W.; BOOTHE, H.W. Antimicrobial Considerations in the Perioperative. Veterinary Clinics North America Small Animal Practice, v.45, n.3, p.585–608, 2015.
CAO, C.; QU, Y.; SUN, M.; QIU, Z.; HUANG, X.; HUAI, B.; LU, Y.; ZENG, Z. In vivo antimicrobial activity of marbofloxacin against Pasteurella multocida in a tissue cage model in calves. Frontiers in Microbiology, v.6, n.2, p.759-767, 2015.
CLOTHIER, K.A.; KINYON, J.M.; GRIFFITH, R.W. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates, Veterinary Microbiology, v.156, n.2, p.178-182, 2012.
COSTA, R.G.; ALMEIDA, C.C.; PIMENTA FILHO, C.E.; HOLANDA JUNIOR, E.V.; SANTOS, N.M. Caracterização do sistema de produção caprino e ovino na região semi-árida do estado da Paraíba. Archivos de Zootecnia, v.57, n.218, p.195-205, 2008.DOREY, L.; PELLIGAND, L.; CHENG, Z.; LEES, P. Pharmacokinetic/pharmacodynamics integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus
pleuropneumoniae and Pasteurella multocida. Plos One, v.12, n.5, p.1-17, 2017.
ELITOK, O.M.; ELITOK, B.; KONAK, S.; DEMIREL, H.H. Clinical efficacy of florfenicol on caprine pasteurellosis. Small Ruminant Research, v.125, n.4, p.142-145, 2015.
HAWARI, A. D.; HASSAWI, D.S.; SWEISS, M. Isolation and identification of Mannheimia haemolytica and Pasteurella multocida in sheep and goats using biochemical tests and random amplified polymorphic dna (RAPD) analysis. Journal of Biological Sciences, v.8, n.7, p.1251- 1254, 2008.
LEAVENS, T.L.; TELL, L.A; CLOTHIER K.A, GRIFFITH, R.W, BAYNES, R.E.; RIVIERE, J.E. Development of a physiologically based pharmacokinetic model to predict tulathromycin distribution in goats. Journal of Veterinary Pharmacology and Therapeutics, v.35, n.2, p.121- 31, 2012.
LEES, P.; PELLIGAND, L.; ILLAMBAS, J.; POTTER, T.; LACROIX, M.; RYCROFT, A.; TOUTAIN, P.L. Pharmacokinetic/pharmacodynamic integration and modelling of amoxicillin for the calf pathogens Mannheimia haemolytica and Pasteurella multocida. Journal of Veterinary Pharmacology and Therapeutics, v.38, n.5, p.457-70, 2015.
LEES, P.; POTTER, T.; PELLIGAND, L.; TOUTAIN, P.L. Pharmacokinetic– pharmacodynamic integration and modelling of oxytetracycline for the calf pathogens Mannheimia haemolytica and Pasteurella multocida. Journal of Veterinary Pharmacology and Therapeutics, v.41, n.1, p.28–38, 2017.
LIN, Z.; LI, M.; GEHRING, R.; RIVIERE, J.E. Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans. Journal of Pharmaceutical Sciences, v.104, n.1, p.233-243, 2015
LOBELL, R.D.; VARMA, K.J. Johnson J.C.; SAMS, R.A.; GERKEN, D.F.; ASHCRAFT, S.M. Pharmacokinetics of florfenicol following intravenous and intramuscular doses to cattle. The Journal of Veterinary Pharmacology and Therapeutics, v.17, n.4, p.253-258, 1994.
LUO, W.; CHEN, D.; WU, M.; LI, Z.; TAO, Y.; LIU, Q.; PAN, Y.; QU, W.; YUAN, Z.; XIE, S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. Journal of Veterinary Science, v.20, n.4, p.40-67, 2019.
MEALEY, K.L.; MARTINEZ, S.E.; VILLARINO, N.F.; COURT, M.H. Personalized medicine: going to the dogs? Human Genetics, v.138, n.5, p.467-481, 2019.
MILLER, R.A.; REIMSCHUESSEL, R. Epidemiologic cutoff values for antimicrobial agents against Aeromonas salmonicida isolates determined by frequency distributions of minimal
inhibitory concentration and diameter of zone of inhibition data. American Journal of Veterinary Research, v.67, n.11, p.1837-1843, 2006.
MOORE, E. Florfenicol. Journal of Exotic Pet Medicine, v.16, n.16, p.52-54, 2009.
MOSER, C.; LERCHE, C.J.; THOMSEN, K.; HARTVIG, T.; SCHIERBECK, J.; JENSEN, P.Ø.; CIOFU, O.; HØIBY, N. Antibiotic therapy as personalized medicine – general considerations and complicating factors. Acta Pathologica, Microbiologica et Immunologica Scandinavica, v.127, n.5, p.361-371, 2019.
ODA, K. Development of software for antimicrobial PK/PD simulation incorporating Monte Carlo simulation based on Microsoft® Office Excel. Journal of Pharmaceutical Health Care and Sciences, v.37, n.6, p.335-344, 2011.
OLE-MAPENAY, I.M.; MITEMA, E.S. Efficacy of doxycycline in a goat model of Pasteurella pneumonia: research communication. Journal of the South African Veterinary Association, v.68, n.2, p.55-58, 1997.
PARK, B.K.; LIM, J.H.; KIM, M.S.; HWANG, Y.H.; YUN, H.I. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in dogs. Research in Veterinary Science, v.84, n.1, p.85-89, 2008.
PARKER, S.L., FRANTZESKAKI, F., WALLIS, S.C., DIAKAKI, C., GIAMARELLOU, H., KOULENTI, D., KARAISKOS, I., LIPMAN, J., DIMOPOULOS, G., ROBERTS, J.A. Population pharmacokinetics of fosfomycin in critically Ill patients. Antimicrobial Agents and Chemotherapy, v.59, n.10, p.6471–6476, 2015.
QIAN, M.R.; WANG, Q.Y.; YANG, H.; SUN, G.Z.; KE, X.B.; HUANG, L.L.; GAO, J.D.; YANG, J.J.; YANG, B. Diffusion-limited PBPK model for predicting pulmonary pharmacokinetics of florfenicol in pig Journal of Veterinary Pharmacology and Therapeutics, v.40, n.6, p.30-38, 2017.