Published 2025-07-01
Keywords
- Technology,
- livestock 4.0,
- precision animal science,
- animal behavior
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
New technologies have the potential to generate benefits to agribusiness through cooperation between productive and scientific scenarios. In livestock 4.0, the constant collection and analysis of data made by sensors and programs allows those responsible to evaluate information related to both animals and the environment. The present experiment aimed at making use of the Arduino system and its modules to develop equipment that can be used in livestock to make the new production model "Livestock 4.0" more accessible to rural producers. Making use of an Arduino UNO and Ethernet Shield W5100 modules, water flow sensor, DHT11 (Digital Humidity and Temperature Sensor), water-proof thermometer (Ds18b20), LDR (Light Dependent Resistor) sensor and a 2 Gb micro SD card, data for photoperiod, room temperature, relative humidity, water consumption and water temperature were collected during a 24-hour test period and stored by the system on the micro SD card in a file in the format " txt". The information stored in the file was transferred to the LibreOffice Calc 7.1 application, where it was processed and analyzed. It was perceived that the animals consumed water in groups and at specific periods of the day, with higher environmental temperatures and lower relative humidity, thus presenting peaks of consumption at certain times.
Downloads
References
- ALMEIDA, J.V.N.; MARQUES, L.R.; MARQUES, T.C.; GUIMARÃES, K.C.; LEÃO, K.M.
- Influência do estresse térmico sobre os aspectos produtivos e reprodutivos de bovinos –
- Revisão. Research, Society and Development, v.9, n.7, p.1-29, 2020.
- AASP. Associação de Advogados de São Paulo. Dolar. 2022. Available from:
- https://www.aasp.org.br/suporte-profissional/indices-economicos/atualizacao-mensal/dolar/.
- Accessed on: feb. 11, 2022.
- BRAUN, A.T.; COLANGELO, E.; STECKEL, T. Farming in the Era of Industrie 4.0. Procedia
- CIRP, v.72, p.979-984, 2018. http://doi.org/j.procir.2018.03.176.
- CASTRO JÚNIOR, S.L.; BALTHAZAR, G.R.; ARNO, A.; CRUZ, M.V.A.; SILVA, I.J.O.
- Produção animal 4.0: conceitos, aplicações e tendências. ReviVale, Araçuaí. v.1, n.1, p.1-22,
- CUNHA, A.C.; PUTTI, F.F. Nível de aceitação da tecnologia da informação por produtores
- rurais. Brazilian Journal of Biosystems Engineering, v.14, n.3, p.264-273, 2020.
- FELIPE, M.R.C.; VÁZQUEZ, M.L.; BERMELLO, J.L.P. Wireless Sensor Network Applied
- to Precision Agriculture: A Technical Case Study at the Technical University of Manabí.
- Communication, Smart Technologies and Innovation for Society, v.252, n.1, p.525-534,
- JAMES, A.; SETH, A.; MUKHOPADHYAY, S.C. Programming Arduino for IoT System.
- Programming Arduino for IoT System. IoT System Design. Smart Sensors, Measurement
- and Instrumentation, v.41, n.1, p.81-104, 2022.
- KLEPACKI, B. Precision farming as an element of the 4.0 industry economy. Annals of the
- Polish Association of Agricultural and Agribusiness Economists, v.22, n.3, p.119-128,
- DOI:10.5604/01.3001.0014.3572.
- PALHARES, J.C.P.; VIANCELLI, A.; KUNZ, A.; SANCHES, A.C.; GAMEIRO, A.H.;
- BARADI, C.R.M.; AITA, C.; AMORIM, D.M.; MIOLA, E.C.C.; JESUS, F.L.F.;
- MENDONÇA, F.C.; FONGARO, G.; BAZZO, H.L.S.; TREICHEL, H.; SCHIRMANN, J.;
- NASCIMENTO, J.G.; GATIBONI, L.C.; LANNA, M.C.S.; MAGRI, M.E.; PAZ TIERI, M.;
- MORALES, R.; NICOLOSO, R.S.; GONZATTO, R.; QUEIROZ, R.; GIACOMINI, S.J.;
- PUJOL, S.B.; CHARLON, V. Produção animal e recursos hídricos: Tecnologias para
- manejo de resíduos e uso eficiente dos insumos. Brasília, DF. Empresa Brasileira de Pesquisa
- Agropecuária, Embrapa Pecuária Sudeste, Ministério da Agricultura, Pecuária e
- Abastecimento. 2019. 210p.
- PALHARES, J.C.P.; MORELLI, M.; NOVELLI, T.I. Water footprint of a tropical beef cattle
- production system: The impact of individual-animal and feed management. Advances in
- Water Resources, v.149, n.1, p.1-9, 2021.
- PEDRO, F.O.; CORDEIRO, D.A.G.; RODRIGUES, A.L.B.; SANTOS, M.P.A.; FOGAÇA, E.;
- ADRIANO, A.C.A.; SILVA, I.R.A.; SILVA, E.S.; CARVALHO, N. Qualidade da água de
- dessedentação para bovinos de corte na fase de recria. Brazilian Journal of Development, v.7,
- n.8, p.80779-80797, 2021.
- PIOVESAN, S.M.; OLIVEIRA, D.S. Fatores que influenciam a sanidade e conforto térmico de
- bovinos em sistemas compost barn. Revista Vivências, v.16, n.30, p.247-258, 2020.
- SABONARO, D.Z.; MARTINELLI, L.A.; CARMO, J.B. Transferência de tecnologias aos
- produtores rurais: eventos científicos e tecnológicos em tempos de pandemia. Research,
- Society and Development, v.11, n.1, p.1-6, 2022.
- SOBROSA NETO, R.C.; BERCHIN, I.I.; MAGTOTO, M.; BERCHIN, S.; XAVIER, W.G.;
- GUERRA, J.B.S.O.A. An integrative approach for the water-energy-food nexus in beef cattle
- production: A simulation of the proposed model to Brazil. Journal of Cleaner Production,
- v.204, p.1108-1123, 2018.
- VITAL-CARRILLO, M. Componentes de la Placa de Arduino. Vida Científica Boletín
- Científico de la Escuela Preparatoria. v.10, n.19, p.44-45, 2022. Available at:
- https://repository.uaeh.edu.mx/revistas/index.php/prepa4/article/view/8405. Accessed on: feb.
- , 2022.
- WILKS, D.L.; COPPOCK, C.E.; LANHAM, J.K.; BROOKS, K.N.; BAKER, C.C.; BRYSON,
- W.L.; ELMORE, R.G.; STERMER, R.A. Responses of lactating Holstein cows to chilled
- drinking water in high ambient temperatures. Journal of Dairy Science, v.73, n.4, p.1091-
- , 1990.
- WILLIAMS, L.R.; FOX, D.R.; BISHOP-HURLEY, G.J.; SWAIN, D.L. Use of radio frequency
- identification (RFID) technology to record grazing beef cattle water point use. Computers and
- Electronics in Agriculture, v.156, p.193-202, 2019.