Vol. 35 No. 4 (2025): Revista Ciência Animal
Review articles

Endocrinology of reproduction in males

Laura Teixeira Viana Vale
Universidade Estadual do Ceará (UECE)
Bio
Isabele Amorim de Moura
Universidade Estadual do Ceará (UECE)
Bio
Sergio Matheus Cidade Ribeiro
Universidade Estadual do Ceará (UECE)
Bio
Pamela Gabrielle Tavares da Costa
Universidade Estadual do Ceará (UECE)
Bio
Ricardo Toniolli
Universidade Estadual do Ceará (UECE)
Bio

Published 2026-02-18

Keywords

  • Gonadotropin, hormone, breeder

How to Cite

VALE, L. T. V.; MOURA, I. A. de; RIBEIRO, S. M. C.; COSTA, P. G. T. da; TONIOLLI, R. Endocrinology of reproduction in males. Ciência Animal, [S. l.], v. 35, n. 4, p. 111–131, 2026. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/15498. Acesso em: 21 feb. 2026.

Abstract

The endocrine system is a highly specialized organization composed of glands and tissues responsible for the production and release of hormones, biochemical substances essential for the regulation of physiological functions in animals. According to their chemical structure, hormones are divided into steroids, peptides/proteins, and derivatives of the amino acid tyrosine. In particular, in the male reproductive system, endocrine glands play a central role. The endocrine system of mammals is closely linked to their nervous system, and the structure that highlights this relationship is the hypothalamus. Specifically regarding the male sex, the testes have a dual role: on one hand, they perform exocrine functions by producing sperm, and on the other hand, they have an endocrine function by secreting steroid hormones, especially testosterone. The gonadotropin-releasing hormone (GnRH), originating from the hypothalamus, supports the release of LH and FSH by the gonadotrophic cells. FSH and LH are among the main hormones related to reproductive processes in males, and alterations in their levels can impair the animal’s reproductive performance. Thus, understanding these hormones is important for the diagnosis and treatment of reproductive disorders, and also enables the development of clinical and biotechnological practices that allow for more efficient reproductive control

Downloads

Download data is not yet available.

References

  1. AMAR, A.P.; WEISS, M.H. Pituitary anatomy and physiology. Neurosurgery Clinics, v.14, n.1, p.11-23, 2003.
  2. ANDERSON, R.A.; SHARPE, R.M. Regulation of inhibin production in the human male and its clinical applications. International Journal of Andrology, v.23, n.3, p.136-144, 2000.
  3. AZIZAH, N.; SUSILOWATI, S.; UTOMO, B.; KUSUMANINGRUM, D.A.; KOSTAMAN, T.; MUTTAQIN, Z.; ARRAZY, A.F. Seminal plasma protein profiles and testosterone levels as biomarker semen quality of candidate Madura bulls. Journal of Advanced Veterinary and Animal Research, v.10, n.3, p.429, 2023.
  4. BACHELOT, A.; BINART, N. Reproductive role of prolactin. Reproduction, v.133, n.2, p.361-369, 2007.
  5. BAHARUN, A.; SAID, S.; ARIFIANTINI, R.I.; KARJA, N.W.K. Correlation between age, testosterone and adiponectin concentrations, and sperm abnormalities in Simmental bulls. Veterinary world, v.14, n.8, p.2124, 2021.
  6. BASHAMBOO, A.; MCELREAVEY, K. Mecanismo de determinação sexual em humanos: Insights a partir de distúrbios do desenvolvimento sexual. Desenvolvimento sexual: genética, biologia molecular, evolução, endocrinologia, embriologia e patologia da determinação e diferenciação sexual, v.10, n.5/6, p.313–325, 2016.
  7. BECKER-SILVA, S.C.; MARQUES JR, A.P. Concentrações Plasmáticas de Testosterona em Caprinos Saanen Machos do Nascimento aos 12 Meses de Idade / Plasma Testosterone Concentrations in Male Saanen Goats from Birth to 12 Months Old. Brazilian Journal of Animal and Environmental Research, v.4, n.1, p.42–51, 2021.
  8. BINDELLINI, D.; MICHELET, R.; AULIN, L.B.S.; MELIN, J.; NEUMANN, U.; BLANKENSTEIN, O.; HUISING, W.; WHITAKER, M.J.; ROSS, R.; KLOFT, C. A quantitative modeling framework to understand the physiology of the hypothalamic-pituitary-adrenal axis and interaction with cortisol replacement therapy. Journal of Pharmacokinetics and Pharmacodynamics, v.51, n.6, p.809-824, 2024.
  9. BLOISE, E.; CIARMELA, P.; DELA CRUZ, C.; LUISI, S.; PETRAGLIA, F.; REIS, F.M. Activin A in mammalian physiology. Physiological reviews, v.99, n.1, p.739-780, 2019.
  10. BOUMANSOUR, L.; BENHAFRI, N.; GUILLON, G.; CORBANI, M.; TOUATI, H.; DEKAR-MADOUI, A.; OUALI-HASSENAOUI, S. Vasopressin and oxytocin expression in hypothalamic supraoptic nucleus and plasma electrolytes changes in water-deprived male Meriones libycus. Animal Cells and Systems, v.25, n.5, p.337-346, 2021.
  11. CHEN, X.; MOENTER, S.M. Gonadal feedback alters the relationship between action potentials and hormone release in gonadotropin-releasing hormone neurons in male mice. Journal of Neuroscience, v.43, n.40, p.6717-6730, 2023.
  12. COSTA, A.C.C.; LIMA, E.M.; SANTOS, J.S. Musculação e o uso de esteroides anabolizantes. Research, Society and Development, v.10, n.13, 2021. http://dx.doi.org/10.33448/rsd-v10i13.21462.
  13. CONSTANZO, L.S. Fisiologia. 6. ed., Rio de Janeiro: Guanabara Koogan, 2015.
  14. DAI, T.; YANG, L.; WEI, S.; CHU, Y.; DAN, X . The effect of gonadotropin-inhibitory hormone on steroidogenesis and spermatogenesis by acting through the hypothalamic–pituitary–testis axis in mice. Endocrine, v.84, n.2, p.745-756, 2024.
  15. DANIEL, P.M.; PRICHARD, M.M.L. Studies of the Hypothalamus and the Pituitary Gland. Acta Endocrinologica, v.80, n.4, p.1-5, 1975.
  16. DAVIDYAN, A.; PATHAK, S.; BAAR, K.; BODINE, S.C. Maintenance of muscle mass in adult male mice is independent of testosterone. PloS One, v.16, n.3, p.1-16, 2021.
  17. DOROTEU, E.M.; VIANA, J.H.M.; JUNIOR, J.A.F.; MACEDO, J.T.A.; OLIVEIRA, R.A.; PEDROSO, P.M. O. Effect of a single or two doses of an anti-GnRH vaccine on testicle morpho-functional characteristics in Nelore bulls. Tropical Animal Health and Production, v.53, n.1, p.1-8, 2021.
  18. DOS SANTOS, L.F., HABUS, S., RUBEL, R.; SOCCOL, C.R. Cordyceps spp. and its Participation in Animal Reproductive System. UNICIÊNCIAS, v.18, n.2, p.111-114, 2014.
  19. DUAN, Y.; TANG, X.; LIU S.; CUI, W.; LI, M.; TANG, S.; YAO, W.; LI, W.; WENG, J.; ZHAN, J.; WEI, Z. Structure-guided design and evaluation of CRM197-scaffolded vaccine targeting GnRH for animal immunocastration. Applied Microbiology and Biotechnology, v.108, n.1, p.1-14, 2024.
  20. DUKES, H.H.; SWENSEN, M.J. Fisiologia dos animais domésticos. 13. ed., Rio de janeiro: Editora Guanabara Koogan, 2017.
  21. FELDT-RASMUSSEN, U.; EFFRAIMIDIS, G.; KLOSE, M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Molecular and Cellular Endocrinology, v.525, n.2, p.1-10, 2021.
  22. FERASYI, T.R.; BARRETT, H.R.; BLACHE, D.; MARTIN, G.B. Modeling the Male Reproductive Endocrine Axis: Potential Role for a Delay Mechanism in the Inhibitory Action of Gonadal Steroids on GnRH Pulse Frequency. Endocrinology, v.157, n.5, p.2080–2092, 2016.
  23. FLAVIO, J.W. Diferenciação sexual das gônadas em mamíferos, 2016. Disponível em: https://pt.m.wikipedia.org/wiki/Ficheiro%3ADiferencia%C3%A7%C3%A3o_Sexual_das_Gonadas_em_Mam%C3%ADferos.png. Acesso em: 27 abr. 2025.
  24. FOWDEN, A.L.; FORHEAD, A.J. Regulação endócrina do metabolismo fetal em direção ao termo. Endocrinologia de Animais Domésticos, v.78, 2022. https://doi.org/10.1016/j. domaniend.2021.106657.
  25. GONEN, N.; FOSTER, J.W.; McLAUGHLIN, H.M.; SARSOUM, K.A.; WILLIAMS, S.R.; WILSON, J.D. Reversão sexual após deleção de um único intensificador distal de Sox9. Science, v.360, n.6396, p.1469–1473, 2018.
  26. GONZÁLEZ, F.H.D. Introdução à endocrinologia reprodutiva veterinária. 1. ed., Porto Alegre: Editora da UFRGS, 2002.
  27. GORMALLY, B.M.G.; ESTRADA, A.; HOFMEYER, H.A.; ROMERO, L.M. Períodos de recuperação durante estresse repetido impactam a corticosterona e as respostas comportamentais de forma diferente em pardais domésticos. Hormones and Behavior, v.112, p.81–88, 2019. https://doi.org/10.1016/j.yhbeh.2019.04.009.
  28. GUPTA, A.; VATS, A.; GHOSAL, A.; MANDAL, K.; BHATTACHARYA, I.; SARKAR, R.; PAL, R.; DAS, S.; MAJUMDAR, S. Follicle-stimulating hormone-mediated decline in miR-92a-3p expression in pubertal mice Sertoli cells is crucial for germ cell differentiation and fertility. Cellular and Molecular Life Sciences, v.79, n.3, p.136, 2022. https://doi.org/10. 1007/s00018-022-04174-9.
  29. HAFEZ, B.; HAFEZ, E.S.E. Reprodução Animal. 7. ed., São Paulo: Manole Ltda, 2004.
  30. HERBISON, A.E. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Frontiers in Neuroendocrinology, v.57, 2020. https://doi.org/10.1016/j.yfrne.2020.100837.
  31. HORST, R.L; GOFF, J.P.; REINHARDT, T.A. Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow. Journal of mammary gland biology and neoplasia, v.10, n.2, p.141-156, 2005.
  32. HUANG, W.J. The Roles of Aromatase Inhibitors in Treating Hypogonadism and Male Infertility. Urological Science, v.33, n.3, p.114-118, 2022.
  33. JANKOWSKA, K.; SUSZCZEWICZ, N.; RABIJEWSKI, M.; DUDEK, P.; ZGLICZYNSKI, W.; MAKSYM, R.B. Inhibin-b and FSH are good indicators of spermatogenesis but not the best indicators of fertility. Life, v.12, n.4, p.511-522, 2022.
  34. JIANG, K.; JORGENSEN, J. Células de Leydig fetais: o que sabemos e o que não sabemos. Reprodução e desenvolvimento molecular, v.91, n.3, p.23739-23754, 2024.
  35. KAUFFMAN, A.S. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Frontiers in Neuroscience, v.16, 2022. https://doi.org/10.3389/ fnins.2022.953252.
  36. KLEIN, B.G. Cunningham Tratado de Fisiologia Veterinária. 6. ed., Rio de Janeiro: Editora Elsevier Guanabara Koogan, 2021.
  37. KNOL, B.W. Stress and the endocrine hypothalamus‐pituitary‐testis system: A review. Veterinary Quarterly, v.13, n.2, p.104–114, 1991.
  38. KÖNIG, H.E.; LIEBICH, H.G. Anatomia dos animais domésticos: texto e atlas colorido. 6. ed., Porto Alegre: Artmed, 2016.
  39. LAKANWAL, D.Q.S. Anatomy and physiology of pituitary gland. IJO - International Journal of Health Sciences and Nursing, v.6, n.1, p.46-56, 2023.
  40. LAMM, S.; CHIDAKEL, A.; BANSAL, R. Obesity and Hypogonadism. Urologic Clinics, v.43, n.2, p.239–245, 2016.
  41. LO, E.M.; RODRIGUEZ, K.M.; PASTUSZAK, A.W.; KHERA, M. Alternatives to testosterone therapy: A Review. Sexual Medicine Reviews, v.6, n.1, p.106-113, 2018.
  42. LUCCIO-CAMELO, D.C.; PRINS, G.S. Disruption of androgen receptor signaling in males by environmental chemicals. The Journal of Steroid Biochemistry and Molecular Biology, v.127, n.1/2, p.74–82, 2011.
  43. LUNDGAARD, R.M.; JØRGENSEN, A. Deciphering sex-specific differentiation of human fetal gonads: Insight from experimental models. Frontiers in cell and developmental biology, v.10, p.902082, 2022. https://doi.org/10.3389/fcell.2022.902082.
  44. MALIN, S.K.; STEWART, N.R. Metformin may contribute to inter-individual variability for glycemic responses to exercise. Frontiers in Endocrinology, v.11, n.519, 2020. https://doi.org/10.3389/fendo.2020.00519.
  45. MAROTO, M.; TORVISCO, S.N.; GARCÍA-MERINO, C.; FERNÁNDEZ-GONZÁLEZ, R.; PERICUESTA, E. Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis. Biomolecules, v.15, n.4, p.500-534, 2025.
  46. MARTINS, S.L.R; DE OLIVEIRA, R.B.; BALLEJO, G. Rat duodenum nitrergic-induced relaxations are cGMP-independent and apamin-sensitive. European Journal of Pharmacology, v.284, n.3, p.265-270, 1995.
  47. MCHENRY, J.; CARRIER, N.; HULL, E.; KABBAJ, M. Sex differences in anxiety and depression: Role of testosterone. Frontiers in Neuroendocrinology, v.35, n.1, p.42–57, 2014.
  48. MEHLMANN, L.M.; MIKOSHIBA, K.; KLINE, D. Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte. Developmental Biology, v.180, n.2, p.489-498, 1996.
  49. MOAWAD, M.A.; ABOSHADY, H.M.; ABD-ALLA M.S.; GHANEM, N.; ABDEL-MONEIM, A.Y.; NISHIBORI, M.; YONEZAWA, T.; MANNEN, H.; AGAMY, R. Genetic polymorphisms of the Growth Hormone (GH) gene in Damascus and Black Bengal male goats. Tropical Animal Health and Production, v.57, n.1, p.18, 2025.https://doi.org/10.1007/ s11250-024-04253-y.
  50. MOREIRA, C. Regulação Sistemas Reprodutores. Revista Ciência Elementar, v.3, n.3, 2015. http://doi.org/10.24927/rce2015.167.
  51. MURRAY, J.A.; SHIBATA, E.F.; BURESH, T.L.; PICKEN, H.; O´MEARA, B.W.; CONKLIN, J.L. Nitric oxide modulates a calcium-activated potassium current in muscle cells from opossum esophagus. American Journal of Physiology-Gastrointestinal and Liver Physiology, v.269, n.4, p.G606-G612, 1995.
  52. NELSON, D.L.; COX, M.M. Lehninger princípios de bioquímica. 6. ed., São Paulo: Sarvier, p.929- 975, 2014.
  53. NETO, A.P.D.L.F.; DE LA BARRERA, C.L.; DE CASTRO, G.A.; LAMELLA, G.M.L.; GAMA, H.C.; DRAGONE, L.G.; MARTINIANO, R.K.G.; XISTO, R.A.N.; DE OLIVEIRA, R. Perspectivas emergentes sobre o papel dos hormônios cardíacos na doença cardiovascular. Epitaya E-books, v.1, n.78, p.699-722, 2024.
  54. NORMAN, A.W; LITWACK, G. Hormones. 2. ed., San Diego: Academic Press, p.49-85, 1997.
  55. OBERLENDER, G.; MURGAS, L.D.S.; DE LIMA, D.; GAGGINI, T.S.; ZANGERONIMO, M.G.; ALVARENGA, A.L.N.; SILVA, D.M. Alterações endócrinas em reprodutores suínos de alto desempenho. Ciência Animal Brasileira/Brazilian Animal Science, v.11, n.1, p.245-250, 2010.
  56. OOI, G,T.; TAWADROS, N.; ESCALONA, R.M. Pituitary cell lines and their endocrine applications. Molecular and cellular endocrinology, v.228, n.1-2, p.1-21, 2004.
  57. OYOLA, M.G.; HANDA R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsibility. The International Journal on the Biology of Stress, v.20, n.5, p.476-494, 2017.
  58. PALOMERA, C.L.; CRUZ, U.M.; DÁVILA, F.S.; TORRES, J.A.P.; ROBERTOS, N.F.O. Características seminales y niveles de testosterona en carneros Pelibuey tratados con oxitocina exógena. Archivos de zootecnia, v.70, n.271, p.311-317, 2021.
  59. PAN, F.; FU, W.; ZHANG, B.; HAN, M.; XIE, H.; YI, Q.; QIAN, W.; CUI, J.; CAO, M.; LI, Y.; JIA, Y.; FANG, G.; LING, Y.; LI, Y.; LIU, Y. Effects of Vaccination against Recombinant FSH or LH Receptor Subunits on Gonadal Development and Functioning Male Rats. Veterinary Sciences, v.11, n.4, p.176-189, 2024.
  60. PRAPAIWAN, N.; THANAWONGNUWECH, R.; SRISUWATANASASAGUL, S.; MENEE-IN S. Anti-Müllerian hormone levels in serum and testes of male dogs: relations with neuter status and bilateral abdominal cryptorchidism. Theriogenology, v.208, p.171-177, 2023. https://doi.org/10.1016/j.theriogenology.2023.06.015.
  61. RABASSA, V.R.; FEIJÓ, J.O.; PERAZZOLI, D.; PEREIRA, C.M.; SCHILD, A.L.P.; JÚNIOR, L.; CORCINI, C.D.; SCHMITT, E.; SCHNEIDER, A.; PINO, F.A.B.D.; BIANCHI, I.; CORRÊA, M.N. Effect of porcine somatotropin on metabolism, testicular size and sperm characteristics in young boars. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.70, n.1, p.73-81, 2018.
  62. RITTER, S.L.; HALL, R.A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nature reviews Molecular cell biology, v.10, n.12, p.819-830, 2009.
  63. RODRIGUES, S.S.; FONSECA, C.C.; DAS NEVES, M.T.D. Células endócrinas do sistema gastroenteropancreático: Conceitos, distribuição, secreções, ação e controle. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, v.8, n.2, p.171-180, 2005.
  64. ROELFSEMA, F.; AOUN, P.; VELDHUIS, J.D. Pulsatile cortisol feedback on ACTH secretion is mediated by the glucocorticoid receptor and modulated by gender. The journal of clinical endocrinology and metabolism, v.101, n.11, p.4094–4102, 2016.
  65. SABER, C.B.; LOWELL B.B. The hypothalamus. Current Biology, v.24, n.23, p.1111-1116, 2014.
  66. SAM, S.; FROHMAN, L.A. Normal Physiology of Hypothalamic Pituitary Regulation. Endocrinology and Metabolism Clinics of North America, v.37, n.1, p.1-22, 2008.
  67. SANDERS, K.M. Postjunctional electrical mechanisms of enteric neurotransmission. Gut, v.47, n.4, p.23-25, 2000.
  68. SCHLEGEL, P.N. Aromatase inhibitor for male infertility. Fertility and Sterility, v.98, n.6, p.1359-1362, 2012.
  69. SILVA, A.E.D; SERAKIDES, R; CASSALI, G.D. Carcinogênese hormonal e neoplasias hormônio-dependentes. Ciência Rural, v.34, n.2, p.625-633, 2004.
  70. STAMATIADES, G.A.; KAISER, U.B. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Molecular and Cellular Endocrinology, v.463, p.131-141, 2018. https://doi.org/10.1016/j.mce.2017.10.015.
  71. THACKRAY, V.G.; MELLON P.L.; COSS, D. Hormones in synergy: Regulation of the pituitary gonadotropin genes. Molecular and Cellular Endocrinology, v.314, n.2, p.192-2003, 2010.
  72. UNIFAL. Histologia interativa, 2025. Disponível em: https://www.unifal-mg.edu.br/ histologiainterativa/glandulas-endocrinas2/#:~:text=O%20sistema%20nervoso%20aut%C3% B4nomo%20(SNA,uma%20resposta%20r%C3%A1pida%20e%20localizada. Acesso em: 20 ago. 2025.
  73. VANNESTE, G.; DHAESE, I.; SIPS, P.; BUYS, E.; BROUCKAERT, P.; LEFEBVRE, R.A. Gastric motility in soluble guanylate cyclase α1 knock‐out mice. The Journal of physiology, v.584, n.3, p.907-920, 2007.
  74. XIE, Y.; ZHANG, C.; CHEN, J.; HU, X. Desenvolvimento gonadal precoce e determinação sexual em mamíferos. International Journal of Molecular Sciences, v.23, n.14, p.7500, 2022.
  75. ZHAO, L.; SUN, C.; LIU, X.; ZHANG, Y.; WANG, L.; LIU, Q. Disruption of androgen receptor signaling and its clinical implications in male reproductive disorders. Frontiers in Endocrinology, v.12, n.1, p.642423-642436, 2021.