Effect of Morinda citrifolia on in vitro maturation of bovine oocytes

Authors

Keywords:

Antioxidant, COCs, Morinda citrifolia, Noni, in vitro Production

Abstract

The in vitro production (IVP) of embryos is a biotechnology that helps the production of genetically superior animals. However, the excessive production of oxygen-reactive species by this technique results in cellular damage to oocytes and embryos. The use of antioxidants during IVP can reduce oxidative stress. The fruit of Morinda citrifolia (noni) may cause positive impacts on the maturation rate of the IVP technique due to its antioxidant properties. Thus, this study aims to evaluate the effects of noni on cellular and molecular aspects in the stage of in vitro maturation (IVM) of bovine oocytes. A total of 817 viable immature oocytes were obtained, which were distributed according to the following treatments with noni: control, 1mg/mL, mg/mL, and 10mg/mL. The rate of matured oocytes was determined by the Hoescht 33342 technique. Some oocytes were used to measure the expression of genes related to apoptosis, antioxidant action, and oxidative stress through the qRT-PCR technique. Few oocytes in germinal vesicle and germinal vesicle rupture stage were obtained; however, a large number of oocytes without identifiable nuclear stage and degenerated were obtained. There was no difference for in nuclear findings between the groups treated with noni. The molecular analysis revealed differences between the experimental groups for the Bcl-2 and BAX genes, indicating that the treatment with noni played an important role in anti-apoptotic protection during IVM, mainly evidenced by the expression of mRNA from the 1 mg/mL noni group. Therefore, research data indicate that Morinda citrifolia had an anti-apoptotic effect during in vitro maturation.

References

ALMEIDA-SOUZA, F.; DE SOUZA, C. DA S.F.; TANIWAKI, N.N.; SILVA, J.J.M.; DE OLIVEIRA, R.M.; ABREU-SILVA, A.L.; CALABRESE, K.S. Morinda citrifolia Linn. fruit (noni) juice induces an increase in no production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c. Nitric Oxide, v.58, p.51–58, 2016.

BORNER, C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Molecular Immunology, v.39, n.11, p.615-647, 2003.

BORUSZEWSKA, D.; SINDEREWICZ, E.; KOWALCZYK-ZIEBA, I.; GRYCMACHER, K.; WOCLAWEK-POTOCKA, I. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus–oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reproductive Biology and Endocrinology, v.13, n.1, p.1-18, 2015.

BRAUN, K.F.; EHNERT, S.; FREUDE, T.; EGAÑA, J.T.; SCHENCK, T.L.; BUCHHOLZ, A.; SCHMITT, A.; SIEBENLIST, S.; SCHYSCHKA, L.; NEUMAIER, M.; STÖCKLE, U.; NUSSLER, A.K. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1. Scientific World Journal, v.11, p.2348-2357, 2011.

CHAN-BLANCO, Y.; VAILLANT, F.; PEREZ, A.M.; REYNES, M.; BRILLOUET, J.M.; BRAT, P. The noni fruit (Morinda citrifolia L.): A review of agricultural research, nutritional and therapeutic properties. Journal of Food Composition and Analysis, v.19, n.6/7, p.645-654, 2006.

DAVIES, C.J.; ELDRIDGE, J.A.; FISHER, P.J.; SCHLAFER, D.H. Evidence for expression of both classical and non-classical major histocompatibility complex class I genes in bovine trophoblast cells. American Journal of Reproductive Immunology, v.55, n.3, p.188–200, 2006.

DENG, S.; CHEN, C. S.; YANG, J. Chemistry of Medicinal Plants, Foods, and Natural Products 2015. Journal of Analytical Methods in Chemistry, v.2015, n. especial, p.1-2, 2015.

FONSECA, J.F. Estratégias para o controle do ciclo estral e superovulação em ovinos e 317 caprinos. In: Congresso Brasileiro de Reprodução Animal, n.16, Anais: Palestras. 2005.

FURNUS, C.; DE MATOS, D.G.; PICCO, S.; PERAL GARCIA, P.; INDA, A.M.; MATTIOL, G.; ERRECALDE, A.L. Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Animal Reproduction Science, v.109, n.1/4, p.88-99, 2008.

GAD, A.; ABU HAMED, S.; KHALIFA, M.; AMIN, A.; EL-SAYED, A.; SWIEFY, S.A.; EL-ASSAL, S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo (Bubalus bubalis) oocytes. International Journal of Veterinary Science Medicine, v.6, n.2, p.279-285, 2018.

GUEMRA, S.; MONZANI, P.S.; SANTOS, E.S.; ZANIN, R.; OHASHI, O.M.; MIRANDA, M.S.; P.R., ADONA. Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.65, n.6, p.1616-1624, 2013.

GONÇALVES, P.B.D.; OLIVEIRA, M.A.L.; MEZZALIRA, A.; MONTAGNER, M.M.; VISINTIN, J.A.; COSTA, L.F.S. Produção in vitro de embriões. In: GONÇALVES, P.B.D.; FIGUEIREDO, J.R.; FREITAS, V.J.F. Biotécnicas aplicadas à reprodução animal. 2. ed. São Paulo, Editora Roca Ltda, 2014. p.261-291.

HALLIWELL, B.; GUTTERIDGE, J. Free Radicals in Biology and Medicine. 4. ed. Oxford: Oxford University Press, 2007.

HEWITT, D.A.; ENGLAND, G.C.W. Incidence of oocyte nuclear maturation within the ovarian follicle of the bitch. Veterinary Record, v.143, n.21, p.590-591, 1998.

KUMAR, S. Caspase function in programmed cell death. Cell Death Differentiation, v.14, n.1, p.32-43, 2007.

LEIBFRIED-RUTLEDGE, M.L.; FIRST, N.L. Characterization of bovine folicular oocytes and their ability to mature in vitro. Journal of Animal Science, v.48, n.1, p.76-86, 1979.

LI, J.; NIU, D.; ZHANG, Y.; ZENG, X. Physicochemical properties, antioxidant and antiproliferative activities of polysaccharides from Morinda citrifolia L. (Noni) based on different extraction methods. International Journal of Biological Macromolecules, v.150, n.1040, p.114-121, 2020.

LIU, S.; HOU, W.; YAO, P.; ZHANG, B.; SUN, S.; NÜSSLER, A.K.; LIU, L. Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicology In Vitro, v.24, n.2, p.516-522, 2010.

MELLO, R.R.C.; FERREIRA, J.E.; SOUSA, S.L.G.; MELLO, M.R.B.; PALHANO, H.B. Produção in vitro (PIV) de embriões em bovinos. Revista Brasileira de Reprodução Animal, v.40, n.2, p.58-64, 2016.

SANTOS, S.S.D.; DANTAS, J.K.; MIRANDA, M.S.; BIONDI, F.C.; OHASHI, O.M. Cinética da maturação nuclear in vitro de oócitos bubalinos. Brazilian Journal of Veterinary Research and Animal Science, v.39, n.5, p.266-270, 2002.

SAEED-ZIDANE M.; LINDEN L.; SALILEW-WONDIM D.; HELD E.; NEUHOFF C.; THOLEN E.; HOELKER M.; SCHELLANDER K.; TESFAYE D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLOS ONE, v.12, n.11, p.1-24, 2017.

SILVA, G.M.; ARAÚJO, V.R.; DUARTE A.B.G.; LOPES C.A.P.; FIGUEIREDO J.R. Papel dos antioxidantes no cultivo in vitro de células ovarianas. Revista Brasileira de Reprodução Animal, v.35, n.3, p.315-326, 2011.

TRINDADE, M.C.; MACENTE, B.I.; VICENTE, R.R.; APPARÍCIO, M. Estresse oxidativo na produção in vitro de embriões bovinos: revisão de literatura. Revista Investigação Veterinária Medicina Veterinária, v.5, n.1, p.37-45, 2016.

Published

2024-01-05

How to Cite

CAMPOS, N. R. C. L. C.; SOUZA, B. G. G. F. de; PEREIRA, H. M.; ABREU-SILVA, A. L.; COSTA JÚNIOR, S. H.; ALMEIDA SOUZA, F.; RIBEIRO, L. S. dos S.; MORAES JÚNIOR, F. de J. Effect of Morinda citrifolia on in vitro maturation of bovine oocytes. Ciência Animal, [S. l.], v. 33, n. 4, p. 10 a 19, 2024. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/12315. Acesso em: 13 may. 2024.

Issue

Section

Artigos Originais