Effects of hyperercolesterolemia on neurological disorders associated with the integrity of hypocampus

Authors

  • Evandro Moreira de ALMEIDA Universidade Christus (UNICHRISTUS), Núcleo de Estudos sobre Memória e Doenças Relacionadas (NEMEDOR)
  • Hugo Jefferson FERREIRA Universidade Christus (UNICHRISTUS), Núcleo de Estudos sobre Memória e Doenças Relacionadas (NEMEDOR)
  • Carolina Melo de SOUZA Universidade Christus (UNICHRISTUS), Núcleo de Estudos sobre Memória e Doenças Relacionadas (NEMEDOR)

Keywords:

Hypercholesterolemia, hippocampus, neurodegenerative diseases

Abstract

Cholesterol is a lipophilic component essential for the body due to its diverse functionalities, such as participation in vitamin D synthesis, metabolism of steroids and sex hormones, help in the absorption of fat soluble vitamins, besides participating in the maintenance of the fluidity and permeability of plasma membrane. This function is extremely important to regularize the action potential and the consequent synaptic plasticity. However, high cholesterol levels due to a hyperlipidemic diet or genetic dysfunction are related to various cardiovascular and metabolic pathologies, such as diabetes. In addition, elevated cholesterol levels participate in the pathophysiology of neuropathies, such as Azheimer and Parkinson. Considering that some neuropathies have hippocampal alterations as one of the events, this study aimed to investigate the possible relationship between hypercholesterolemia, hippocampus and the pathophysiology of neurological disorders through a review of the literature using preclinical studies. During the month of February 2018, we searched the databases Pubmed and Lilacs, using "hypercholesterolemia" and "hippocampus". Inclusion criteria: Preclinical studies published between 2013 and 2017 were selected. Exclusion criteria: review articles, articles that did not correlate hypercholesterolemia with neurological disorders and hippocampus. Increased serum cholesterol was associated with biochemical changes, especially oxidative stress, inflammation and metabolism of the amyloid protein, as well as neurodegenerative processes at the hippocampus level. In addition, drugs that modulate serum cholesterol levels have also been found to influence cognition and hippocampal integrity. Preclinical studies indicate that the hippocampus was susceptible to hypercholesterolemia. Therefore, hypercholesterolemia may contribute to neurological disorders with hippocampal disorders.

References

APPLETON, J.P.; SCUTT, P.; SPRIGG, N.; BATH, P.M. Hypercholesterolaemia and vascular dementia. Clinical Science, v.131, n.14, p.1561–1578, 2017.

BARTSCH, T. The Clinical Neurobiology of the Hippocampus: An integrative view. Oxford University Press.

BARTSCH, T.; WULFF, P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, v.309, august, p.1–16, 2015.

BROOKS, S.W.; DYKES, A.C.; SCHREURS, B.G. A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus. Journal Alzheimers Disease, v.56, n.1, p.185–196, 2017.

CALABRESI, P.; CASTRIOTO, A.; DI FILIPPO, M.; PICCONI, B. New experimental and clinical links between the hippocampus and the dopa.minergic system in Parkinson’s disease. The Lancet Neurology, v.12, n.8, p.811–821, 2013.

CHEN, Y.L.; WANG, L.M.; CHEN, Y.; GAO, J.Y.; MARSHALL, C.; CAI, Z.Y; HU, G.; XIAO, M. Changes in astrocyte functional markers and β-amyloid metabolism- related proteins in the early stages of hypercholesterolemia. Neuroscience, v.316, p.178–191, 2016.

CIAULA, A.D.; GARRUTI, G.; BACCETTO, R.L.; MOLINA-MOLINA, E.; BONFRATE, L.; WANG, D.Q.; PORTINCASA, P. Bile Acid Physiology. Annals of Hepatology, v.16, p.4-11, 2017.

DE OLIVEIRA, J.; MOREIRA, E.L.G.; SANTOS, D.B.; PIERMARTIRI, T.C.; DUTRA, R.C.; PINTOND, S.; TASCA, C.I.; FARINA, M.; PREDIGER, R.D.S.; DE BEM, A.F. Increased susceptibility to amyloid-β-induced neurotoxicity in mice lacking the low-density lipoprotein receptor. Journal of Alzheimer’s Disease, v.41, n.1, p.43–60, 2014.

DHIKAV, V.; ANAND, K. Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, v.15, n.4, p.239, 2012.

DIAS, H.K.I.; BROWN, C.L.R.; POLIDORI, M.C.; LIP, G.Y.H.; GRIFFITHS, H.R. LDL-lipids from patients with hypercholesterolaemia and Alzheimer’s disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention. Clinical Science, v.129, n.12, p.1195–1206, 2015.

DIETSCHY, J.M.; TURLEY, S.D. Thematic review series: Brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. Journal of Lipid Research, v.45, n.8, p.1375–1397, 2004.

ENGEL, D.F.; DE OLIVEIRA, J.; LOPES, J.B.; SANTOS, D.B.; MOREIRA, E.L.G.; FARINA, M. ; RODRIGUES, A.L.S.; DE SOUZA BROCARDO, P.; DE BEM, A.F. Is there an association between hypercholesterolemia and depression? Behavioral evidence from the LDLr-/-mouse experimental model. Behavioural Brain Research, v.311, p.31–38, 2016.

FLORES-CUADRADO, A.; UBEDA-BAÑON, I.; SAIZ-SANCHEZ, D.; DE LA ROSA-PRIETO, C.; MARTINEZ-MARCOS, A. Hippocampal α-synuclein and interneurons in Parkinson’s disease: Data from human and mouse models. Movement Disorders, v.31, n.7, p.979–988, 2016.

GOEDERT, M.; Spillantini, M.G.Century of Alzheimer’s disease. Science, v.314, n.5800, p.777–781, 2006.

GUSTAW-ROTHENBERG, K. Dietary Patterns Associated with Alzheimer’s Disease: Population Based Study. International Journal of Environmental Research and Public Health, v.6, p.1335-1340, 2009.

HEVERIN, M.; MAIOLI, S.; PHAM, T.; MATEOS, L.; CAMPORESI, E.; ALI, Z.; WINBLAD, B.; CEDAZO-MINGUEZ, A.; BJÖRKHEM, I.27-Hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. Behavioural Brain Research, v.278, p.356–359, 2014.

KANG, D.H.; HEO, R.W.; YI, C.; KIM, H.; CHOI, C.H.; ROH, G.S. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death. BMC Neuroscience, v.16, n.1, p.72, 2015.

KUO, P.H.; LIN, C.I; CHEN, Y.H.; CHIU, W.C.; LIN, S.H. A high-cholesterol diet enriched with polyphenols from Oriental plums (Prunus salicina) improves cognitive function and lowers brain cholesterol levels and neurodegenerative- related protein expression in mice. British Journal of Nutrition, v.113, n.10, p.1550–1557, 2015.

LECERF, J.M.; DE LORGERIL, M. Dietary cholesterol: From physiology to cardiovascular risk. British Journal of Nutrition, v.106, n.1, p.6–14, 2011.

LECIS, C.; SEGATTO, M. Cholesterol Homeostasis Imbalance and Brain Functioning: Neurological Disorders and Behavioral Consequences. Journal of Neurology and Neurological Disorders, v.1, n.1, p.1–14, 2014.

LUDKA, F.K.; CONSTANTINO, L.C.; KUMINEK, G.; BINDER, L.B.; ZOMKOWSKI, A.D.; CUNHA, M.P.; DAL-CIM, T.; RODRIGUES, A.L.; TASCA, C.I.Atorvastatin evokes a serotonergic system-dependent antidepressant-like effect in mice. Pharmacology Biochemistry and Behavior, v.122, p.253–260, 2014.

MADHAVADAS, S.; SUBRAMANIAN, S. Combination of Spirulina with glycyrrhizin prevents cognitive dysfunction in aged obese rats. Indian Journal of Pharmacologie, v.47, n.1, p.39–44, 2015.

MARSHAL, W.J.; LAPSLEY, M.; DAY, A.; AYLING, R. Clinical Biochemistry: Metabolic and Clinical Aspects. 3a ed. Edinburgh Churchill Livingstone, Elsevier, 2014.

MASSARI, C.M.; CASTRO, A.A.; DAL-CIM, T.; LANZNASTER, D.; TASCA, C.I. In vitro 6-hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801. Toxicology in Vitro, v.37, p.162–168, 2016.

MÉTAIS, C.; HUGHES, B.; HERRON, C. E. Simvastatin increases excitability in the hippocampus via a PI3 kinase-dependent mechanism. Neuroscience, v.291, p.279–288, 2015.

MOREIRA, E.L.G.; DE OLIVEIRA, J.; ENGEL, D.F.; WALZ, R.; DE BEM, A.F.; FARINA, M.; PREDIGER, R.D. Hypercholesterolemia induces short-term spatial memory impairments in mice: Up-regulation of acetylcholinesterase activity as an early and causal event? Journal of Neural Transmission, v.121, n.4, p.415–426, 2014.

NIZARI, S.; CARARE, R.O.; HAWKES, C.A. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet. Scientific Reports, v.6, february, p.2–11, 2016.

OKEREKE, O.I.; ROSNER, B.A.; KIM, D.H.; KANG, J.H.; COOK, N.R.; MANSON, J.E.; BURING, J.E.; WILLETT, W.C.; Grodstein, F. Dietary fat types and 4-year cognitive change in communitydwelling older women, v.72, n.1, p.124–134, 2012.

PAUL, R.; BORAH, A. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Scientific Reports, v.7, n.1, p.1–13, 2017.

REISI, P.; DASHTI, G.R.; SHABRANG, M.; RASHIDI, B. The effect of vitamin E on neuronal apoptosis in hippocampal dentate gyrus in rabbits fed with high- cholesterol diets. Advanced biomedical research, v.3, p.42, 2014.

SCHILLING, J.M.; CUI, W.; GODOY J.C.; RISBROUGH, B.V.; NIESMAN, I.R.; ROTH D.M.; PATEL, P.M.; DRUMMOND, J.C.; PATEL, H.H.; ZEMLJIC-HARPF, A.E.; HEAD, B.P. Long-term atorvastatin treatment leads to alterations in behavior, cognition, and hippocampal biochemistry. Behavioural Brain Research, v.1, n.267, p.6–11.

SEGATTO, M.; LEBOFFE, L.; TRAPANI, L.; PALLOTTINI, V. Cholesterol Homeostasis Failure in the Brain: Implications for Synaptic Dysfunction and Cognitive Decline. Current Medicinal Chemistry, v.21, 2014.

SIMON, K.C.; CHEN, H.; MICHAEL, S.; ASCHERIO, A. Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology, v.69, n.17, p.1688–1695, 2007.

SIMS-ROBINSON, C.; BAKEMAN, A.; ROSKO, A.; GLASSER, R.; FELDMAN, E.L. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain. Molecular Neurobiology, v.53, n.4, p.2287–2296, 2016.

SMITH, P.J.; BLUMENTHAL, J.A. Dietary Factors and Cognitive Decline, Journal of Prevention of Alzheimer's Disease, v.3, n.1, p.53–64, 2016.

VIJAYAKUMAR, A.; VIJAYAKUMAR, A. Comparison of hippocampal volume in dementia subtypes. ISRN Radiology, v.2013, p.174-524, 2013.

WANG, J.; DRON, J.S.; BAN, M.R.; ROBINSON, J.F.; MCINTYRE, A.D.; ALAZZAM, M.; ZHAO, P.J.; DILLIOTT, A.A.; CAO, H.; HUFF, M.W.; RHAINDS, D.; LOW-KAM, C.; DUBÉ, M.P.; LETTRE, G.; TARDIF, J.C.; HEGELE, R.A. Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically. Arteriosclerosis, Thrombosis, and Vascular Biology, v.36, n.12, p.2439–2445, 2016.

ZHANG, G.; LI, M.; XU, Y.; PENG, L.; YANG, C.; ZHOU, Y.; ZHANG, J. Antioxidation Effect of Simvastatin in Aorta and Hippocampus: A Rabbit Model Fed High-Cholesterol Diet. Oxidative Medicine and Cellular Longevity, v.2016, p157-166, 2016.

Published

2023-08-04

How to Cite

ALMEIDA, E. M. de; FERREIRA, H. J.; SOUZA, C. M. de. Effects of hyperercolesterolemia on neurological disorders associated with the integrity of hypocampus. Ciência Animal, [S. l.], v. 28, n. 1, p. 71–81, 2023. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/11123. Acesso em: 19 jul. 2024.

Issue

Section

Artigos Originais