Sustainability in adoption of the pasture consortium and its influence on the milk properties
Keywords:
Unsaturated fatty acids, Biohydrogenation, CLA, LegumesAbstract
The use of intercropped grasses and legumes promotes a number of benefits to the entire production system. However, their employment is still modest and their benefits are constantly put to the test. In view of this, the purpose of this review is to promote the discussion about the use of intercropped pastures and their relationship with milk production, composition and nutritional characteristics, as well as their relationship with the sustainability of the system. In general, participation of 20 to 30% of legumes in the forage canopy is sufficient to promote increases in milk production compared to exclusively grass systems. This increase is related to the lower percentage of grazing fibers, which allows higher intake and dry matter digestibility. It should also be noted that these effects are not linear and that the percentages mentioned should guide the systems. As for the nutritional profile of milk, the levels of unsaturated fatty acids (AGI) are higher in the pasture than in the confined ones. However, research comparing the fatty acid profile of milk as a function of mixed or single pastures is generally less common, as legumes like cloves have secondary compounds that may facilitate the passage of AGI through the rumen without undergoing biohydrogenation. In addition, the use of intercropping pastures allows a reduction in the use of nitrogen fertilizers, an important aspect from the environmental point of view. The use of food systems based on intercropping grasses and legumes can mean improvements in the nutritional quality of milk, such as the increase in the percentage of AGI, which are strongly associated with a healthier diet.
References
AGUIRRE, P.F; OLIVO, C.J.; SIMONETTI, G.D.; NUNES, J.S.; SILVA, J.O.; SANTOS, M.S.; CORREA, M.R.; BRATZ, V.F.; ANJOS, A.N.A dos. Produtividade de pastagens de Coastcross-1 em consórcio com diferentes leguminosas de ciclo hibernal. Ciência Rural, v.44, n.12, p.2265-2272, 2014.
AKBARIDOUST, G.; PLOZA, T.; TRENERRY, V.C.; WALES, W.J.; AULDIST, M.J.; DUNSHEA, F.R.; AJLOUNI, S. Influence of different systems for feeding supplements to grazing dairy cows on milk fatty acid composition. Journal of Dairy Research, v.81, p.156-163, 2014.
AJMONE-MARSAN, P.; GARCIA, J.F. Origem e evolução dos bovinos domésticos. Acta Scientiae Veterinariae, v.36, p.241-256, 2008.
BARCELLOS, A.O.; RAMOS, A.K.B.; VILELA, L.; MARTHA JUNIOR, G.B. Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Revista Brasileira de Zootecnia, v.37, p.51-67, 2008.
BILAL, G.; CUE, R.I.; MUSTAFA, A.F.; HAYES, J.F. Short communication: Estimates of heritabilities and genetic correlations among milk fatty acid unsaturation indices in Canadian Holsteins. Journal of Dairy Science, v.95, n.12, p.7367-7371, 2012.
BUGAUD, C.; BUCHIN, S.; HAUWUY, A.; COULON, J.B. Relationships between flavour and chemical composition of Abondance cheese derived from different types of pasture. Lait, v.81, p.757-774, 2001.
CODOGNOTO, L.C.; PORTO, M.O.; CAVALI, J.; FERREIRA, E.; STACHIW, R. Alternativas de mitigação de emissão de metano entérico na pecuária. Revista Brasileira de Ciências da Amazônia, v.3, n.1, p.81-92, 2014.
CARRARA, E.R.; GAYA, L.G.; MOURÃO, G.B. Fatty acid profile in bovine milk: Its role in human health and modification by selection. Archivos Zootecnia, v.66, n.253, p.151-158, 2017.
CASAGRANDE, D.R. Leguminosas de Clima Tropical e Subtropical In: REIS, R.A.; BERNARDES, T.F.; SIQUEIRA, G.R. Forragicultura: ciência, tecnologia e gestão dos recursos forrageiros. Jaboticabal, 1ª ed., Multipress, p.137-154, 2013.
CARVALHO, P.C.F.; ROCHA, L.M.; BAGGIO, C.; MACARI, S.; KUNRATH, T.R.; MORAES, A. Característica produtiva e estrutural de pastos mistos de aveia e azevém manejados em quatro alturas sob lotação contínua. Revista Brasileira de Zootecnia, v.39, n.9, p.1857-1865, 2010.
CHILLIARD, Y.; GLASSER, F.; FERLAY, A.; BERNARD, L.; ROUEL, J.; DOREAU, M. Effects of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. Europe Journal Lipid Science Technologic, v.109, p.828-855, 2007.
CHRISTENSEN, R.G.; YANG, S.Y.; EUN, J.S.; YOUNG, A.J.; HALL, J.O.; MACADAM, J.W. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows. Journal of Dairy Science, v.98, n.11, p.7982-7992, 2015.
COPPA, M.; FERLAY, A.; MONSALLIER, F.; VERDINER-METZ, I.; PRADEL, P.; DIDIENNE, R.; FARRUGGIA, A.; MONTEL, M.C.; MARTIN, B. Milk fatty acid composition and cheese texture and appearance from cows fed hay or different grazing systems on upland pastures. Journal Dairy Science, v.94, n.3, p.1132-1145, 2011.
DICK, M.; SILVA, M.A.; DEWES, H. Mitigation of environmental impacts of beef cattle production in southern Brazil – evaluation using farm-based life cycle assessment. Journal of Cleaner Production, v.87, p.58-67, 2015.
D’URSO, S.; CUTRIGNELLI, M.I.; CALABRÒ, S.; BOVERA, F.; TUDISCO, R.; PICCOLO, V.; INFASCELLI, F. Influence of pasture on fatty acid profile of goat milk. Journal Animal Physiological Animal Nutrition, v.92, p.405-410, 2008.
FALCHERO, L.; LOMBARDI, G.; GORLIER, A.; LONATI, M.; ODOARDI, M.; CAVALLERO, A. Variation in fatty acid composition of milk and cheese from cows grazed on two alpine pastures. Dairy Science & Technology, v.90, p.657-672, 2010.
FERLAY, A.; BERNARD, L.; MEYNADIER, A.; MALPUECH-BRUGÈRE, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie, v.141, p.107-120, 2017.
FONTANELI, R.S.; SANTOS, H.P dos.; FONTANELI, R.S. Forrageiras para Integração Lavoura-Pecuária-Floresta na Região Sul-brasileira. 2ª ed., Brasília: Embrapa, 2012. 542p.
FUKE, G.; NORNBERG, J.L. Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Food Science and Nutrition, v.57, n.1, p.1-7, 2017.
HARRIS, S.L.; AULDIST, M.J.; CLARK, D.A.; JANSEN, E.B.L. Effects of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. Journal of Dairy Research, v.65, p.389-400, 1998.
KENNELLY, J.J. The fatty acid composition of milk fat as influenced by feeding oilseeds. Animal Feed Science and Technology, v.60, n.3-4, p.137-152, 1996.
KENNEDY, E.; LEWIS, E.; MURPHY, J.P.; GALVIN, N.; O’DONOVAN, M. Production parameters of autumn-calving cows offered either a total mixed ration or grazed grass plus concentrate during early lactation. Journal of Dairy Science, v.98, n.11, p.7917-7929, 2015.
KEPLER, C.R.; HIRONS, K.P.; McNEILL, J.J.; TOVE, S.B. Intermediates and Products of the Biohydrogenation of Linoleic Acid by Butyrivibrio fibrisolvens. The Journal of Biological Chemistry, v.241, n.6, p.350-1354, 1996.
KLIEM, K.E.; HUMPHRIES, D.J.; REYNOLDS, C.K.; MORGAN, R.; GIVENS, D.I. Effect of oilseed type on milk fatty acid composition of individual cows, and also bulk tank milk fatty acid composition from commercial farms. Animals, v.11, n.2, p.354-364, 2017.
LAHLOU, M.N.; KANNEGANTI, R.; MASSINGILL, L.J.; BRODERICK, G.A.; PARK, Y.; PARIZA, M.W.; FERGUSON, J.D.; WU, Z. Grazing increases the concentration of CLA in dairy cow milk. Animal, v.8, n.7, p.1191-1200, 2014.
LI, D.; WANG, J.Q.; BU, D.P. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro. BMC Research Notes, v.5, n.97, p.1-8, 2012.
LOPES, J.C.; HERPER, M.T.; GIALLONGO, F.; OH, J.; SMITH, L.; ORTEGA-PEREZ, A.M.; HARPER, S.A.; MELGAR, A.; KNIFFEN, D.M.; FABIN, R.A.; HRISTOV, A.N. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows. Journal of Dairy Science, v.100, p.1-14, 2017.
MALAGUEZ, E.G.; DINARTE, G.V.; TADIELO, L.E.; SANTOS, N.L.T.; CASTAGNARA, D.D. Alternatives for spring forage emptiness in Pampa, Brazil. Revista de Agricultura Neotropical, v.4, n.4, p.58-64, 2017.
MARTIN, B.; VERDIER-METZ, I.; BUCHIN, S.; HURTAUD, C.; COULON, J.B. How do the nature of forages and pasture diversity infuence the sensory quality of dairy livestock products? Animal Science, v.81, n.2, p. 205-212, 2005.
HENNESSY, D.; DILLON, P.; KILCAWLEY, K.N.; STANTON, C.; ROSS, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. Journal Dairy Science, v.99, n.12, p.1-20, 2016a.
O’CALLAGHAN, T.F.; HENNESSY, D.; McAULIFFE, S.; KILCAWLEY, K.N.; O´DONOVAN, M.; DILLON, P.; ROSS, R.P.; STANTON, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, v.99, n.12, p.1-17, 2016b.
O’CALLAGHAN, T.F.; MANNION, D.T.; HENNESSY, D.; McAULIFFE, S.; O´SULLIVAN, M.G.; LEEUWENDAAL, N.; BERESFORD, T.P.; DILLON, P.; KILCAWLEY, K.N.; SHEEHAN, J.J.; ROSS, R, P.; STANTON, C. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. Journal of Dairy Science, v.100, n.5, p.1-21, 2017.
OLSEN, H.G.; KNUTSEN, T.M.; KOHLER, A.; SVENDSEN, M.; GIDSKEHAUG, L.; GROVE, H.; NOME, T.; SODELAND, M.; SUNDSAASEN, K.K.; KENT, M.P.; MARTENS, H.; LIEN, S. Genome-wide association mapping for milk fat composition and fine mapping of a QTL for de novo synthesis of milk fatty acids on bovine chromosome 13. Genetics Seletion Evolution. v.49, n.20, p.1-13, 2017.
PEMBLETON, K.G.; HILLS, J.L.; FREEMAN, M.J.; McLAREN, D.K.; FRENCH, M.; RAWNSLEY, R. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures. Journal of Dairy Science, v.99, n.5, p.1-17, 2016.
PHILIPPEAU, C.; LETTAT, A.; MARTIN, C.; SILBERBERG, M.; MORGAVI, D.P.; FERLAY, A.; BERGER, C.; NOZIÈRE, P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. Journal of Dairy Science, v.100, n.4, p.2637-2650, 2017.
REGO, O.A.; CABRITA, A.R.J.; ROSA, H.J.D.; ALVES, S.P.; DUARTE, V.; FONSECA, A.J.M.; VOUZELA, C.F.M.; PIRES, F.R.; BESSA, R.J.B. Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Italian Journal of Animal Science, v.15, n.1, p.76-86, 2016.
ROCA-FERNÁNDEZ, A.I.; PEYRAUD, J.L.; DELABY, L.; DELAGARDE, R. Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards. Animal, v.10, n.9, p.1448-1456, 2016.
SEÓ, H.L.S.; MACHADO FILHO, L.C.P.; RUVIARO, C.F.; LÉIS, C.M de. Avaliação do Ciclo de Vida na bovinocultura leiteira e as oportunidades ao Brasil. Engenharia Sanitária Ambiental, v.22, n.2, p.221-237, 2017.
SHOKRYZADANA, P.; RAJIONA, M.A.; MENGAB, G.Y.; BOOB, L.J.; EBRAHIMIA, M.; ROYANC, M.; SAHEBIB, M.; AZIZIB, P.; ABIRID, R.; JAHROMI, M.F. Conjugated Linoleic Acid: A Potent Fatty Acid Linked to Animal and Human Health. Food Science and Nutrition, v.57, p.2737-2748, 2017.
TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4ª ed., Porto Alegre: Artmed, 2009. 819p.
TAMBARA, A.A.C.; SIPPERT, M.R.; JAURIS, G.C.; FLORES, J.L.C.; HENZ, É.L.; VELHO, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Scientiarum. Animal Sciences, v.39, n.3, p.235-241, 2017.
TOTTY, V.K.; GREENWOOD, S.L.; BRYANT, R.H.; EDWARDS, G.R. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. Journal Dairy Science, v.96, n.1, p.141-149, 2013.
TUDISCO, R.; GROSSI, M.; ADDI, L.; MUSCO, N.; CUTRIGNELLI, M.I.; CALABRÒ, S.; INFASCELLI, F. Fatty Acid Profile and CLA Content of Goat Milk: Influence of Feeding System. Journal of Food Research, v.3, n.4, p.93-100, 2014.
VIALLON, C.; VERDIER-METZ, I.; DENOYER, C.; PRADEL, P.; COULON, J.B.; BERDAGUÉ, J.L. Desorbed terpenes and sesquiterpenes from forages and cheeses. Journal of Dairy Research, v.66, p.319-326, 1999.
VIBART, R.E.; TAVENDALE, M.; OTTER, D.; SCWWENDEL, B.H.; LOWE, K.; GREGORINI, P.; PACHECO, D. Milk production and composition, nitrogen utilization, and grazing behavior of late-lactation dairy cows as affected by time of allocation of a fresh strip of pasture. Journal of Dairy Science, v.100, n.7, p.1-14, 2017.
VILLENEUVE, M.P.; LEBEUF, Y.; GERVAIS, R.; TREMBLAY, G.F.; VUILLEMARD, J.C.; FORTIN, J.; CHOUINARD, P.Y. Milk volatile organic compounds and fatty acid profile in cowa fed Timothy as hay, pasture, or silage. Journal of Dairy Science, v.96, n.11, p.7181-7194, 2013.
WALLACE, R.J.; CHAUDHARY, L.C.; McKAIN, N.; McEVAN, N.R.; RICHARDSON, A.J.; VERCOE, P.E.; WALKER, N.D.; PAILLARD, D. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiology Letters, v.265, n.2, p.195-201, 2006.
WOODWARD, S.L.; Waugh, C.D.; ROACH, C.G.; FYNN, D.; PHILLIPS, J. Are diverse species mixtures better pastures for dairy farming? Proceedings of the New Zealand Grassland Association, v.75, p.79-84, 2013.
YAN, M.J.; HUMPHREYS, J.; HOLDEN, N.M. The carbon footprint of pasture-based milk production: Can white clover make a difference? Journal of Dairy Science, v.96, n.2, p.79-84, 2013.