FLUIDO AMNIÓTICO, ALTERNATIVA EFICIENTE PARA OBTENÇÃO DE CÉLULAS-TRONCO MESENQUIMAIS MULTIPOTENTES

Autores

  • Juliana Paula Martins ALVES Faculdade de Medicina Veterinária, Universidade Estadual do Ceará (UECE)
  • Juliana Gomes VASCONCELOS Faculdade de Medicina Veterinária, Universidade Estadual do Ceará (UECE)
  • Davide RONDINA Faculdade de Medicina Veterinária, Universidade Estadual do Ceará (UECE)
  • Rafael ROSSETTO Faculdade de Medicina Veterinária, Universidade Estadual do Ceará (UECE)

Palavras-chave:

Líquido aminiótico, Célula-tronco, Diferenciação celular, Marcadores

Resumo

Na última década houve um crescente interesse na investigação quanto à presença de células-tronco no fluido amniótico, devido a facilidade de obtenção, isolamento e cultivo in vitro. Além disso, a utilização do fluido como fonte de células-tronco possibilita a obtenção de células com alto grau de indiferenciação e elevada taxa de proliferação in vitro e grande capacidade de diferenciação. Todas estas vantagens tornam o líquido amniótico uma fonte atrativa de células-tronco para utilização em biotecnologias reprodutivas, como a clonagem e transgênese, bem como ensaios clínicos e terapias celulares em animais para posterior utilização em seres humanos. Este artigo apresenta um panorama da pesquisa científica com células-tronco derivadas do fluido amniótico no mundo, a partir de levantamento bibliográfico de artigos científicos de pesquisadores brasileiros e estrangeiros.

Referências

ABDULRAZZAK, H.; MOSCHIDOU, D.; JONES, G.; GUILLOT, P.V. Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. Journal of The Royal Society Interface, v.7, n.6, p.689-706, 2010.

AIRAS, L.; HELLMAN, J.; SALMI, M.; BONO, P.; PUURUNEN, T.; SMITH, D.J.; JALKANEN, S. CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. Journal of Experimental Medicine, v.182, n.5, p.1603-1608, 1995.

ALVES, A.; MUOTRI, A.R. Simples assim: células-tronco. 1ª ed., São Paulo-SP: Atheneu, p.224-234, 2014.

ANTONUCCI, I.R.; DI PIETRO, R.; ALFONSI, M.; CENTURIONE, M.A.; CENTURIONE, L.; SANCILIO, S.; PELAGATTI, F.; D'AMICO, M.A.; BALDASSARRE, A.; PIATTELLI, A.; TETÈ, S.; PALKA, G.; BORLONGAN, C.V. AND STUPPIA, L. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression. profiles of embryonic and primordial germ cell. Cell Transplantation, v.23, n.12, p.1501-1515, 2014.

BAETZ, A.L.; HUBBERT W.T.; GRAHAM, C.K. Changes of biochemical constituents in bovine fetal fluids with gestational age. American Journal of Veterinary, v.37, n.9, p.1047-1052, 1976.

BYDLOWSKI, S.P.; JANZ, F. L.; DUARTE, S. A.; CAVAGLIERI, R. DE C.; DEBES, A. A. AND MASELLI, L. M. F. Células-tronco do líquido amniótico. Revista Brasileira de Hematologia e Hemoterapia, v.31, n.1, p.45-52, 2009.

CANANZI, M.; ATALA, A.; DE COPPI, P. Stem Cells from Amniotic Fluid. In: ATALA, A.; LANZA, R.; THOMSON, J.; NEREM, R. Principles of Regenerative Medicine. 9a ed., Elsevier Inc. All, cap.12, p.223-239, 2011.

CHANG, Y.J.; HO T.Y.; WU, M.L.; HWANG, S.M.; CHIOU T.W.; TSAI, M.S. Amniotic fluid stem cells with low gamma-interferon response showed behavioral improvement in Parkinsonism rat model. PLoS One, v.8, n.9, p.76118-76128, 2013.

CHEN, Z.; LU, X.C.; SHEAR, D.A.; DAVE, J.; DAVIS, A.R.; EVANGELISTA, C.A.; DUFFY, D.; TORTELLA, F.C. Synergism of human amnion-derived multipotente progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery: pre-clinical studies in an experimental model of penetrating ballistic-like brain injury. Brain Research, v.1368, p.71-81, 2011.

COLOSIMO, A.V.R.; RUSSO, V.; MAURO, A.; CURINI, V.; MARCHISIO, M.; BERNABO, N.; ALFONSI, M.; MATTIOLI, M.; BARBONI, B. Prolonged in vitro expansion partially affects phenotypic features and osteogenic potential of ovine amniotic fluid-derived mesenchymal stromal cells. Cytotherapy, v.15, n.8, p.930-950, 2013.

COLTER, D.C.; SEKIYA, I.; PROCKOP, D.J. Identification of a subpopulation of rapidly self‐renewing and multipotentail adult stem cells in colonies of human marrow stromal cells. Proceedings of the national academy of sciences of the United States of America, v.98, n.14, p.7841-7845, 2001.

CORRADETTI, B.; MEUCCI, A.; BIZZARO, D.; CREMONESI, F.; AND LANGE A. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction research, v.145, n.4, p.391-400, 2013.

CREMONESI, F.; CORRADETTI, B.; CONSIGLIO, L. Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology, v.75, n.8, p.1400-1415, 2011.

DE COPPI, P.; BARTSCH, G.; SIDDIQUI, M.M.; XU, T.; SANTOS, C.C.; PERIN, L.; MOSTOSLAVSKY, G.; SERRE, A.C.; SNYDER, E.Y.; YOO, J.J. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, v.25, n.1, p.100-106, 2007.

DEV, K.; GIRI, S.; KUMAR, A.; YADAV, A.; SINGH, B.; GAUTAM, S. Isolation, culturing and characterization of feeder-independent amniotic fluid stem cells in buffalo (Bubalus bubalis). Research in Veterinary Science, v.93, n.2, p.743-748, 2011.

DITADI, A.; DE COPPI, P.; PICONE, O. Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood, v.113, n.17, p.3953-3960, 2009.

DOMINGUES, M.M.; LIPTRAP, R.M.; BASRUR, P.K. Fetal fluids steroids and their relationship to gonadal steroid secretion in single and twin bovine fetuses. Theriogenology, v.34, n.1, p.57-73, 1990.

DOMINGUEZ, L.P.I. Líquido pulmonar fetal. Revista médica del hospital general, v.69, n.4, p.221-225, 2006.

DOMINICI, M.; LE BLANC K.; SLAPER-CORTENBACH, F.C.; KRAUSE M.; DEANS R.J.; KEATING A.; PROCKOP D.J. AND HORWITZ E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, v.8, n.4, p.315-317, 2006.

ECKFELDT, C.E.; MENDENHALL E.M.; VERFAILLIE, C.M. The molecular repertoire of the ‘almighty’ stem cell. Nature Reviews Molecular Cell Biology, v.6, n.9, p.726-737, 2005.

ESLAMINEJAD, M.B.; JAHANGIR, S. Amniotic fluid stem cells and their application in cell-based tissue regeneration. International Journal of Fertility and Sterility, v.6, n.3, p.147-156, 2012.

FAVARON, P.O.; CARVALHO, R.C.; BORGHESI, J.; ANUNCIAÇÃO, A.R.; MIGLINO, M.A. The amniotic membrane: development and potential applications: A review. Reproduction in Domestic Animals, v.50. n.6, p.881-892, 2015.

GANDOLFI, F.; VANELLI, A.; PENNAROSSA, G.; RAHAMAN, M.; ACOCELLA, F.; BREVINI, T.A. Large animal models for cardiac stem cell therapies. Theriogenology, v.75, n.2, p.1416-1425, 2011.

GARCIA, A.; SALAHEDDINE, M. Bovine ultrasound-guided transvaginal amniocentesis. Theriogenology, v.47, n.5, p.1003-1008, 1997.

GHIONZOLI, M.; CANANZI, M.; ZANI, A. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatric Surgery International, v.26, n.1, p.79-84, 2010.

GHOLIZADEH-GHALEHAZIZ, S.; FARAHZADI, R.; FATHI, E.; PASHAIAS, M. A Mini Overview of Isolation, Characterization and Application of Amniotic Fluid Stem Cells. International Journal of Stem Cells, v.8, n.2, p.115-120, 2015.

GOSDEN, C.M. Amniotic fluid cell types and culture. British Medical Bulletin, v.39, n.4, p.348-354, 1983.

GRUNERT, E.; BIRGEL, E.H. Obstetrícia veterinária. 2ª ed., Porto Alegre, RS: Sulina, 1984. 323p.

HAWKINS, K.E.; CORCELLI, M.; DOWDING, K.; RANZONI, A.M.; VLAHOVA, F.; HAU, K.L. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain. Stem Cells Translational Medicine, v.7, n.5, p.439-449, 2018.

HENDERSON, J.K.; DRAPER, H.S.; FISHEL, J.A.; MOORE, P.W.; ANDREWS, P.D. Preimplantation human embryos and embryonic stem cells show comparable expression of stage‐specific embryonic antigens. Stem Cells, v.20, n.4, p.329-337, 2002.

HERVEY, E.J.; SLATER, J.S. The sources of sheep foetal fluids in the later stages of getation. Journal of Physiology, v.194, n.1, p.40-41, 1967.

HOEHN, H.; SALK, D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. In: LATT, S.A.; DARLINGTON, G.J. Methods in Cell Biology: Prenatal diagnosis: Cell biological approaches, 26a ed., Academic Press, v.26, p.11-34, 1982.

IACONO, E.; BRUNORI, L.; PIRRONE, A.; PAGLIARO, P.P.; RICCI, F.; TAZZARI, P.L.; MERLO, B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction, v.143, n.4, p.455-468, 2012.

JEZIERSKI, A.; RENNIE, K.; TREMBLAY, R.; ZURAKOWSKI, B.; GRUSLIN, A.; SIKORSKA, M.; BANI-YAGHOUB, M. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Reviews, v.6, n.2, p.199-214, 2010.

JIANG, Y.; JAHAGIRDAR, B.N.; REINHARDT, R.L. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, v.418, n.6893, p.41-49, 2002.

JOO, S.; KO, I.K.; ATALA, A.; YOO, J.J.; LEE, S.J. Amniotic fluid-derived stem cells in regenerative medicine research. Archives of Pharmacal Research, v.35, n.2, p.271-280, 2012.

KIM, W.S.; LEE, Y.; KIM, H.; HWANG, K.J.; KWON, H.C.; KIM, S.K.; CHO, D.J.; KANG, S.G.; YOU, J. Antiwrinkle effect of adipose-derived stem cell: Activation of dermal fibroblast by secretory factors. Journal of Dermatological Science, v.53, n.2, p.96-102, 2009.

KOLAPARTHY, L.K.; SANIVARAPU, S.; MOOGLA, S.; KUTCHAN, R.S. Adipose tissue - adequate, accessible regenerative material. International Journal of Stem Cells, v.8, n.2, p.121-127, 2015.

LOVATI, A.B.; CORRADETTI, B.; LANGE CONSIGLIO, A.; RECORDATI, C.; BONACINA, E.; BIZZARO, D.; CREMONESI, F. Comparison of equine bone marrow-umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary Research Communications, v.35, n.2, p.103-121, 2011.

LOVELL, K.L.; SPRECHER, D.J.; AMES, K.N. Development and efficacy of ultrasound-guided fetal fluid aspiration techniques for prenatal diagnosis of caprine beta-mannosidosis. Theriogenology, v.44, n.4, p.517-527, 1995.

MACEK, M.; HURYCH, J.; REZACOVA, D. Collagen synthesis in long-term cultures of amniotic fluid. Ceskoslovenská Pediatrie, v.28, n.9, p.478-480, 1973.

MAGATTI, M.; DE MUNARI, S.; VERTUA, E.; GIBELLI, L.; WENGLER, G.S.; PAROLINI, O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells, v.26, n.1, p.182-192, 2008.

MARTINELLI, D.; PEREIRA, R.C.; MASSIMO, M.; ROBERTO, B.; MASTROGIACOMO, M.; DOMENICO, C.; CANCEDDA, R.; GENTILI, C.A humanized system to expand in vitro amniotic fluid-derived stem cells intended for clinical application. Cytotherapy, v.18, n.3, p.438-451, 2016.

MAURO, A.; TURRIANI, A.; IOANNONI, V.; RUSSO, A.; MARTELLI, O.; DI GIACINTO, D.; BERARDINELLI, P. Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Veterinary Research Communication, v.34, n.1, p.25-28, 2010.

MELLOR, D.J.; SLATER, J.S. Daily changes in amniotic fluid during the last three months of pregnancy in conscious, unstressed ewes, with catheters in their foetal fluid sacs. Journal of Physiology, v.217, n.3, p.573-604, 1972.

MIKI, T.; STROM, S.C. Amnion-derived pluripotent/multipotente stem cells. Stem Cell Reviews, v.2, n.2, p.133-142, 2006.

MIKI, T.; LEHMANN, T.; CAI H.; STOLZ, D.B.; STROM, S.C. Stem cell characteristics of amniotic epithelial cells. Stem Cells, v.23, n.10, p.1549-1559, 2005.

MOSCHIDOU, D.; MUKHERJEE, S.; BLUNDELL, M.P. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells, v.22, n.3, p.444-458, 2013.

NAITO, Y.; LOWENSTEIN, J.M. 5ʹ- Nucleotidase from rat heart membranes. Biochemistry, v.20, n.18, p.5188-5194, 1981.

NAKAMURA, Y.; MUGURUMA, Y.; YAHATA, T. Expression of CD90 on keratinocyte stem/progenitor cells. British Journal of Dermatology, v.154, n.6, p.1062-1070, 2006.

PARK, S.B.; SEO, M.S.; KANG, J.G.; CHAE, J.S.; KANG, K.S. Isolation and characterization of equine amniotic fluid-derived multipotente stem cells. Cytotherapy, v.13, n.3, p.341-349, 2011.

PAROLINI, O.; PONCINI, M.; EVANGELISTA, M.; SCHMIDT, D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regenerative Medicine, v.4, n.2, p.275-291, 2009.

PITTENGER, M.F.; MACKAY, A.M.; BECK, S.C.; JAISWAL, R.K.; DOUGLAS, R.; MOSCA, J.D.; MOORMAN, M.A.; SIMONETTI, D.W.; CRAIG S.; MARSHAK, D.R. Multilineage potential of adult human mesenchymal stem cells. Science, v.284, n.5411, p.143-147, 1999.

PRATHEESH, M.D.; GAGE, N.E.; KATIYAR, A.N.; DUBEY, P.K.; SHARMA, B.; SAIKUMAR, G.; AMARPAL, S.G.T. Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Research in Veterinary Science, v.94, n.2, p.313-319, 2013.

REHEN, S.; PAULSEN, B. Células-tronco: o que são? Para que servem? 1ª ed., Rio de Janeiro, RJ: Vieira e Lent, 2007. 96p.

ROUBELAKIS, M.G. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells, v.16, n.6, p.931-952, 2007.

ROUBELAKIS, M.G.; BITSIKA, V.; ZAGOURA, D.; TROHATOU, O.; PAPPA, K.I.; MAKRIDAKIS, M.; ANTSAKLIS, A.; VLAHOU, A.; ANAGNOU, N.P. Sindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One, v.8, n.1, p.4747-4752, 2013.

SCHMIDT, D.; ACHERMANN, J.; ODERMATT, J.; ODERMATT, B.; BREYMANN, C.; MOL, A.; GENONI, M.; ZUND, G.; HOERSTRUP, S.P.P. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation, v.116, n.11, p.64-70, 2007.

STEIGMAN, S.A.; AHMED, A.; SHANTI, R.M.; TUAN, R.S.; VALIM, C.; FAUZA, D.O. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. Journal of Pediatric Surgery, v.44, n.6, p.1120-1126, 2009.

TONIOLLO, G.H.; VICENTE, W.R.R. Manual de Obstetrícia Veterinária, 1ª ed., São Paulo-SP: Livraria Varela, p.31-36, 1995.

TSAI, M.S.; LEE J.L.; CHANG, Y.J.; HWANG, S.M. Isolation of human multipotent mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage culture protocol. Human Reproduction, v.19, n.6, p.1450-1456, 2004.

TSAI, P.J.; WANG, H.S.; JAN, G.J. Undifferentiated Wharton´s jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice. Cell Transplant, v.24, n.8, p.1555-1570, 2014.

URANIO, F.M.; VALENTINI, L.; CONSIGLIO, A.L.; CAIRA, M.; GUARICCI, A.C.; VENTURA, M.; CATACCHIO, C.R.; MARTINO, N.A.; VALENTI, L. Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from adnexa: A comparative study of amniotic fluid, amnion and umbilical cord matrix. Molecular Reproduction and Development, v.78, n.5, p.361-373, 2011.

VIOLINI, S.; GORDI, C.; PISANI, L.; RAMELLI, P.; CANIATTI, M.; MARIANI, P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Plant Biology, v.10, n.29, p.172-180, 2009.

WEISSMAN, I.L. Stem cells: Units of development, units of regeneration, and units in evolution. Cell, v.100, n.1, p.157-168, 2000.

WINTOUR, E.M.; McFARLANE, C. Anatomy, physiology and pathology of the amniotic and allantoic compartments in sheep and cow. Australian Veterinary Journal, v.63, n.7, p.216-221, 1986.

YOUNG, H.Y.; FAIRBUM, H.R. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. The Anatomical Record, v.264, n.1, p.51-62, 2001.

ZORZANELLI, R.T.; SPERONI, A.V.; MENEZES, R.A. AND LEIBING, A. Pesquisa com células-tronco no Brasil: A produção de um novo campo científico. História, Ciências, Saúde-Manguinhos, v.24, n.1, p.129-144, 2015.

Downloads

Publicado

2023-01-27

Como Citar

ALVES, J. P. M.; VASCONCELOS, J. G.; RONDINA, D.; ROSSETTO, R. FLUIDO AMNIÓTICO, ALTERNATIVA EFICIENTE PARA OBTENÇÃO DE CÉLULAS-TRONCO MESENQUIMAIS MULTIPOTENTES. Ciência Animal, [S. l.], v. 29, n. 3, p. 98–113, 2023. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/10075. Acesso em: 21 maio. 2024.

Edição

Seção

Artigos de Revisão