Importance of pH on the functional dynamic of rumen

Authors

  • Emanuel Isaque Cordeiro DA SILVA Instituto Agronômico de Pernambuco (UFRPE)
  • Eduarda Carvalho da Silva FONTAIN Criação de Caprinos e Ovinos, Belo Jardim
  • Mariana Ribeiro Castellano PEIXOTO Medicina Veterinária (CECA/UFAL)

Keywords:

Physiology, pH, ruminal balance, fermentation, buffers

Abstract

The rumen is a mostly aqueous and complex n ecosystem and environment that receives the ingested food, which it is mixed and processed through fermentation for degradability, digestion, and use by the animal. Rumen microorganisms (fungi, protozoa, and bacteria) are responsible for fermentation through the production of enzymes that exert a specific effect on the different constituents of the diet, presenting as final components volatile fatty acids (VFAs), ammonia (NH 3 ), and methane (CH 4 ). The rumen microbiota depends on the stability of the environment in which they live to survive, multiply and ferment food; however, each species and type of microorganism present in the rumen has a particular requirement for pH, temperature, oxygen, and osmotic for this. The rumen population depends on the type of feed the animal receives, which serves as a substrate for
fermentation and determines the type and quantity of products produced during this process and, therefore, the rumen pH throughout the day. Diets high in concentrate (starch) and low fiber result in a low pH (acidic), while diets high in fiber and low starch (roughage, for example) produce a high pH (close to neutrality). This is the scope of this systematic bibliographic review: to present the importance of pH on the dynamics and flow of rumen balance for optimal fermentation rates and degradability. Articles from selected journals and periodicals, as well as Ruminant Nutrition books, were evaluated to support the subject and compile them into a single material.

References

ALI, S.Z.; NAHIAN, M.K.; HOQUE, M.E. Extraction of cellulose from agro-industrial

wastes. In: BHAWANI, S.A.; KHAN, A.; AHMAD, F.B. Extraction of Natural Products from

Agro-Industrial Wastes. 1. ed., Cambridge: Elsevier, cap.19, p.319-348, 2023.

AMACHAWADI, R.G.; NAGARAJA, T.G. Pathogenesis of liver abscesses in cattle.

Veterinary Clinics: Food Animal Practice, v.38, n.3, p.335-346, 2022.

CABRAL, L.S.; WEIMER, P.J. Megasphaera elsdenii: Its role in ruminant nutrition and its

potential industrial application for organic acid biosynthesis. Animals, v.12, n.1, p.2019, 2024.

CAÑAVERAL-MARTÍNEZ, U.R.; SÁNCHEZ-SANTILLÁN, P.; TORRES-SALADO, N.;

HERNÁNDEZ-SÁNCHEZ, D.; HERRERA-PÉREZ, J.; AYALA-MONTER, M.A. Effect of

waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent

digestibility, and ruminal characteristics in calf diets. Veterinary World, v.16, n.3, p.421-430,

CASTILLO-LOPEZ, E.; PETRI, R.M.; RICCI, S.; RIVERA-CHACON, R.; SENER-

AYDEMIR, A.; SHARMA, S.; REISINGER, S.; ZEBELI, Q. Dynamic changes in salivation,

salivary composition, and rumen fermentation associated with duration of high-grain feeding

in cows. Journal of Dairy Science, v.104, n.4, p.4875-4892, 2021.

CECONI, I.; VIANO, S.A.; MÉNDEZ, D.G.; GONZÁLEZ, L.; DAVIES, P.; ELIZALDE, J.C.;

BRESSAN, E.; GRANDINI, D.; NAGARAJA, T.G.; TEDESCHI, L.O. Combined use of

monensin and virginiamycin to improve rumen and liver health and performance of feedlot-

finished steers. Translational Animal Science, v.6, n.4, p.1-9, 2022.

CUSACK, P.M.V.; DELL’OSA, D.; WILKES, G.; GRANDINI, D.; TEDESCHI, L.O.

Ruminal pH and its relationship with dry matter intake, growth rate, and feed conversion ratio

in commercial Australian feedlot cattle fed for 148 days. Australian Veterinary Journal, v.99,

n.8, p.319-325, 2021.

DA SILVA, E.I.C. Formulação e fabricação de rações para ruminantes. 1. ed., Belo Jardim:

Emanuel Isaque Cordeiro da Silva, 2021.

DIJKSTRA, J.; VAN GASTELEN, S.; DIEHO, K.; NICHOLS, K.; BANNIK, A. Review:

Rumen sensors: data and interpretation for key rumen metabolic processes. Animal, v.14, n.S1,

p.176-186, 2020.

DVOŘÁČKOVÁ, H.; DVOŘÁČEK, J.; GONZÁLEZ, P.H.; VLČEK, V. Effect of different

soil amendments on soil buffering capacity. PLoS ONE, v.17, n.2, p.e0263456, 2022.

ELMHADI, M.E.; ALI, D.K.; KHOGALI, M.K.; WANG, H. Subacute ruminal acidosis in

dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies.

Animal Nutrition, v.10, n.1, p.148-155, 2022.

ERDMAN, R.A. Dietary buffering requirements of the lactating dairy cow: a review. Journal

of Dairy Science, v.71, n.12, p.3246-3266, 1988.

FADAEE, S.; DANESH MESGARAN, M.; VAKILI, A. In vitro effect of the inorganic buffers

in the diets of holstein dairy cow varying in forage:concentrate ratios on the rumen acid load

and methane emission. Iranian Journal of Applied Animal Science, v.11, n.3, p.485-496,

FROSSASCO-DAVICINI, G.P.; ELIZONDO-SALAZAR, J.A. Efecto de distintas dietas sobre

el tiempo de rumia durante el periodo de predestete en reemplazos de lechería. Nutrición

Animal Tropical, v.14, n.1, p.50-74, 2020.

GÜNDÜZ, K.A.; BAŞÇIFTÇI, F. IoT-Based pH monitoring for detection of rumen acidosis.

Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.74, n.3, p.457-472, 2022.

GUNUN, N.; WANAPAT, M.; KAEWPILA, C.; KHOTA, W.; POLYORACH, S.;

CHERDTHONG, A.; SUWANNASING, R.; PATARAPREECHA, P.; KESORN, P.;

INTARAPANICH, P.; VIRIYAWATTANA, N.; GUNUN, P. Effect of heat processing of

rubber seed kernel on in vitro rumen biohydrogenation of fatty acids and fermentation.

Fermentation, v.9, n.2, p.143-154, 2022.

HASSAN, F.; GUO, Y.; LI, M.; TANG, Z.; PENG, L.; LIANG, X.; YANG, C. Effect of

methionine supplementation on rumen microbiota, fermentation, and amino acid metabolism in

in vitro cultures containing nitrate. Microorganisms, v.9, n.8, p.1717-1742, 2021.

IZADBAKHSH, M-H.; HASHEMZADEH, F.; ALIKHANI, M.; GHORBANI, G-R.;

KHORVASH, M.; HEIDARI, M.; GHAFFARI, M.H.; AHMADI, F. Effects of dietary fiber

level and forage particle size on growth, nutrient digestion, ruminal fermentation, and behavior

of weaned holstein calves under heat stress. Animals, v.14, n.2, p.275-293, 2024.

JANASWAMY, S.; YADAV, M.P.; HOQUE, M.; BHATTARAI, S.; AHMED, S. Cellulosic

fraction from agricultural biomass as a viable alternative for plastics and plastic products.

Industrial Crops and Products, v.179, n.1, p.114692-114700, 2022.

JIANG, Y.; DAI, P.; DAI, Q.; MA, J.; WANF, Z.; HU, R.; ZOU, H.; PENG, Q.; WANG, L.;

XUE, B. Effects of the higher concentrate ratio on the production performance, ruminal

fermentation, and morphological structure in male cattle-yaks. Veterinary Medicine and

Science, v.8, n.2, p.771-780, 2022.

KAMEL, M.S.; DAVIDSON, J.L.; VERMA, M.S. Strategies for bovine respiratory disease

(BRD) diagnosis and prognosis: A comprehensive overview. Animals, v.14, n.4, p.627, 2024.

KAUFMANN, W.; HAGEMEISTER, H.; DIRKSEN, G. Adaptation to changes in dietary

composition, level and frequency of feeding. In: RUCKEBUSCH, Y.; THIVEND, P.

Digestive physiology and metabolism in ruminants. 1. ed., Lancaster: MTP Press Limited,

cap.28, 1980. p.587-602.

KAZEMI, M.; MOKHTARPOUR, A. Chemical, mineral composition, in vitro ruminal

fermentation and buffering capacity of some rangeland-medicinal plants. Acta Scientiarum.

Animal Sciences, v.44, n.1, p.e55909, 2022.

KIM, H.; PARK, T.; KWON, I.; SEO, J. Specific inhibition of Streptococcus bovis by endolysin

LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to

carbohydrate metabolism. Journal of Animal Science and Biotechnology, v.12, n.1, p.93,

KOVÁCS, L.; RÓZSA, L.; PÁLFFY, M.; HEJEL, P.; BAUMGARTNER, W.; SZENCI, O.

Subacute ruminal acidosis in dairy cows - physiological background, risk factors and diagnostic

methods. Veterinarska Stanica, v.51, n.1, p.5-17, 2020.

KRÓL, B.; SŁUPCZYŃSKA, M.W.; WILK, M.; ASGHAR, M.; CWYNAR, P. Anaerobic

rumen fungi and fungal direct-fed microbials in ruminant feeding. Journal of Animal and

Feed Sciences, v.32, n.1, p.3-16, 2023.

LIAO, Y.L.; YAND, J. The release process of Cd on microplastics in a ruminant digestion in-

vitro method. Process Safety and Environmental Protection, v.157, n.1, p.266-272, 2022.

LI, C.; BEAUCHEMIN, K.A.; WANG, W. Feeding diets varying in forage proportion and

particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial

protein synthesis, digestibility, and milk production. Journal of Dairy Science, v.103, n.5,

p.4340-4354, 2020.

LI, M.M.; GHIMIRE, S.; WENNER, B.A.; KOHN, R.A.; FIRKINS, J.L.; GILL, B.;

HANIGAN, M.D. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics

in continuous cultures of ruminal contents. Journal of Dairy Science, v.105, n.11, p.8879-

, 2022.

MACÊDO, A.J.S..; CAMPOS, A.C.; COUTINHO, D.N.; FREITAS, C.A.S.; ANJOS, A.J.;

BEZERRA, L.R. Effect of the diet on ruminal parameters and rumen microbiota: review.

Revista Colombiana de Ciencia Animal. RECIA, v.14, n.1, p.e886, 2022.

MACLEOD, G.K.; COLUCCI, P.E.; MOORE, A.D.; GRIEVE, D.G.; LEWIS, N. The effects

of feeding frequency of concentrates and feeding sequence of hay on eating behavior, ruminal

environment and milk production in dairy cows. Canadian Journal of Animal Science, v.74,

n.1, p.103-113, 1994.

MAPHAM, P.H.; VORSTER, J.H. Heat stress in cattle, 2017. Disponível em: https://www.

cpdsolutions.co.za/Publications/article_uploads/Heat_stress_in_cattle.pdf. Acesso em: 26 jun.

MENSCHING, A.; BÜNEMANN, K.; MEYER, U.; VON SOOSTEN, D.; HUMMEL, J.;

SCHMITT, A.O.; SHARIFI, A.R.; DÄNICKE, S. Modeling reticular and ventral ruminal pH

of lactating dairy cows using ingestion and rumination behavior. Journal of Dairy Science,

v.103, n.8, p.7260-7275, 2020.

MIHOK, T.; HREŠKO ŠAMUDOVSKÁ, A.; BUJŇÁK, L.; TIMKOVIČOVÁ LACKOVÁ, P.

Determination of buffering capacity of the selected feeds used in swine nutrition. Journal of

Central European Agriculture, v.23, n.4, p.732-738, 2022.

MIKUŁA, R.; PSZCZOLA, M.; RZEWUSKA, K.; MUCHA, S.; NOWAK, W.; STRABEL, T.

The effect of rumination time on milk performance and methane emission of dairy cows fed

partial mixed ration based on maize silage. Animals, v.12, n.1, p.50, 2022.

MIZRAHI, I.; WALLACE, R.J.; MORAIS, S. The rumen microbiome: balancing food security

and environmental impacts. Nature Reviews Microbiology, v.19, n.9, p.553-566, 2021.

MOHARRERY, A. The determination of buffering capacity of some ruminant’s feedstuffs and

their cumulative effects on TMR ration. American Journal of Animal and Veterinary

Sciences, v.2, n.4, p.72-72, 2007.

MONTAÑO, M.F.; CHIRINO, J.O.; SALINAS-CHAVIRA, J.; ZINN PAS, R.A. Ruminal

alkalizing potential of brucite and sodium bicarbonate in feedlot cattle diets. Applied Animal

Science, v.38, n.4, p.326-334, 2022.

MONTEIRO, H.F; FACIOLA, A.P. Ruminal acidosis, bacterial

lipopolysaccharides. Journal of Animal Science, v.98, n.8, p.1-9, 2020.

changes,

and

NEVILLE, E.W.; FAHEY, A.G.; GATH, V.P.; MOLLOY, B.P.; TAYLOR, S.J.; MULLIGAN,

F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and

sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. Journal of

Dairy Science, v.102, n.9, p.8027-8039, 2019.

OETZEL, G.R. Subacute ruminal acidosis in dairy herds: physiology, pathophysiology,

milk fat responses, and nutritional management, Vancouver, BC, Canadá. In: 40th Annual

Conference, 40, 2007, Anais… Vancouver: American Association of Bovine Practitioners,

v.40, p.89-119, 2007.

PALMONARI, A.; FEDERICONI, A.; CAVALLINI, D.; SNIFFEN, C.J.; MAMMI, L.;

TURRONI, S.; D’AMICO, F.; HOLDER, P.; FORMIGONI, A. Impact of molasses on ruminal

volatile fatty acid production and microbiota composition in vitro. Animals, v.13, n.4, p.728,

PHESATCHA, K.; PHESATCHA, B.; WANAPAT, M; CHERDTHONG, A. The effect of

yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native

beef cattle. Animals, v.12, n.1, p.53-63, 2022

PRASANTH, C.R.; AJITHKUMAR, S. Effect of sub-acute ruminal acidosis (SARA) on milk

quality and production performances in commercial dairy farms-A review. International

Journal of Science, Environment and Technology, v.5, n.6, p.3731-3741, 2016.

SHI, W.; HAISAN, J.; INABU, Y.; SUGINO, T.; OBA, M. Effects of starch concentration of

close-up diets on rumen pH and plasma metabolite responses of dairy cows to grain challenges

after calving. Journal of Dairy Science, v.103, n.12, p.11461-11471, 2020.

SOLTIS, M.P.; MOOREY, S.E.; EGERT-McLEAN, A.M.; VOY, B.H.; SHEPHERD, E.A.;

MYER, P.R. Rumen biogeographical regions and microbiome variation. Microorganisms,

v.11, n.3, p.747-758, 2023.

SOUZA, A.O.; TAVEIRA, J.H.S.; FERNANDES, P.B.; COSTA, K.A.P.; COSTA, C.M.;

GURGEL, A.L.C.; SILVA, A.C.G.; COSTA, J.V.C.P. Chemical composition and fermentation

characteristics of maize silage with citrus pulp. Revista Brasileira de Saúde e Produção

Animal, v.23, n.6, p.e21352022, 2022.

SUARJANA, I.G.K; PG, K.T.; SUDIPA, P.H. Characteristics of rumen fluid, pH and number

of microbia. Journal of Veterinary and Animal Sciences, v.4, n.1, p.6-10, 2021.

SUN, X.; CHENG, L.; JONKER, A.; MUNIDASA, S.; PACHECO, D. A review: Plant

carbohydrate types—The potential impact on ruminant methane emissions. Frontiers in

Veterinary Science, v.9, n.1, p.880115-880129, 2022.

UNGERFELD, E.M.; CANCINO-PADILLA, N.; VERA-AGUILERA, N.; SCORCIONE,

M.C.; SALDIVIA, M.; LAGOS-PAILLA, L.; VERA, M.; CERDA, C.; MUÑOZ, C.;

URRUTIA, N.; MARTÍNEZ, E.D. Effects of type of substrate and dilution rate on fermentation

in serial rumen mixed cultures. Frontiers in Microbiology, v.15, n.1, p.1356966-1356986,

VARGAS, J.E.; LÓPEZ-FERRERAS, L.; ANDRÉS, S.; MATEOS, I.; HORST, E.H.; LÓPEZ,

S. Differential diet and pH effects on ruminal microbiota, fermentation pattern and fatty acid

hydrogenation in RUSITEC continuous cultures. Fermentation, v.4, n.4, p.320-338, 2023.

VASILEVSKIY, N.V.; YELETSKAYA, T.A. Physiological aspects of complete mixed diet

digestion in complex stomach of ruminants on the example of cattle (Bos taurus taurus).

Agricultural Biology, v.54, n.4, p.787-797, 2019.

VENTER, C. The role of particle length in feed rations. Stockfarm, v.10, n.5, p.38-39, 2020.

WANAPAT, M.; VIENNASAY, B.; MATRA, M.; TOTAKUL, P.; PHESATCHA, B.;

Ampapon, T.; WANAPAT, S. Supplementation of fruit peel pellet containing phytonutrients to

manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein

synthesis. Journal of the Science of Food and Agriculture, v.101, n.11, p.4543-4550, 2021.

WANG, L.; ZHANG, G.; LI, Y.; ZHANG, Y. Effects of high forage/concentrate diet on volatile

fatty acid production and the microorganisms involved in VFA production in cow rumen.

Animals, v.10, n.2, p.223-234, 2020a.

WANG, L.; LI, Y.; ZHANG, Y.; WANG, L. The effects of different concentrate-to-forage ratio

diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle.

Animals, v.10, n.6, p.957-974, 2020b.

XIAO, J.; CHEN, T.; ALUGONGO, G.M.; KHAN, M.Z.; LI, T.; MA, J.; LIU, S.; WANG, W.;

WANG, Y.; LI, S.; CAO, Z. Effect of the length of oat hay on growth performance, health

status, behavior parameters and rumen fermentation of holstein female calves. Metabolites,

v.11, n.12, p.890, 2021.

ZAPATA, O.; CERVANTES, A.; BARRERAS, A.; MONGE-NAVARRO, F.; GONZÁLEZ-

VIZCARRA, V.M.; ESTRADA-ANGULO, A.; URÍAS-ESTRADA, J.D., CORONA, L.;

ZINN, R.A.; MARTÍNEZ-ALVAREZ, I.G.; PLASCENCIA, A. Effects of single or combined

supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and

total tract digestion in lambs. Small Ruminant Research, v.204, n.1, p.106538-106543, 2021.

ZHANG, Z.; LI, Y.; ZHANG, J.; PENG, N.; LIANG, Y.; ZHAO, S. High-Titer lactic acid

production by Pediococcus acidilactici PA204 from corn stover through fed-batch

simultaneous saccharification and fermentation. Microorganisms, v.8, n.10, p.1491-1499,

Published

2025-07-01

How to Cite

SILVA, E. I. C. D.; FONTAIN, E. C. da S.; PEIXOTO, M. R. C. Importance of pH on the functional dynamic of rumen. Ciência Animal, [S. l.], v. 35, n. 2, p. 78–95, 2025. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/15783. Acesso em: 8 dec. 2025.