IMPORTÂNCIA DO pH SOBRE A DINÂMICA FUNCIONAL DO RÚMEN
Palavras-chave:
Fisiologia, pH, equilíbrio ruminal, fermentação, tamponantesResumo
O rúmen é um ecossistema e ambiente majoritariamente aquoso e complexo que recebe o alimento ingerido, que é misturado e processado mediante a fermentação para a degradabilidade, digestão e utilização pelo animal. Os microrganismos ruminais (fungos, protozoários e bactérias) são os incumbidos de realizar a fermentação mediante a produção de enzimas que exercem um efeito específico sobre os diferentes constituintes da dieta, tendo como componentes finais os ácidos graxos voláteis (AGVs), amônia (NH3) e metano (CH4). A microbiota ruminal depende da estabilidade do ambiente em que vivem para sobreviver, multiplicar-se e realizar a fermentação dos alimentos, porém, cada espécie e tipo de microrganismo presente no rúmen possui uma exigência particular de pH, temperatura, oxigênio e pressão osmótica para tal. A população ruminal depende do tipo de alimentação que o
animal recebe, que serve de substrato para a fermentação e determina o tipo e a quantidade de produtos produzidos durante esse processo e, portanto, o pH ruminal ao longo do dia. Dietas ricas em concentrado (amido) e baixa fibra resultam em um baixo pH (ácido), enquanto dietas ricas em fibra e baixo amido (volumosos, por exemplo) produzem um pH elevado (próximo da neutralidade). Este é o escopo desta revisão bibliográfica sistemática: apresentar a importância do pH sobre a dinâmica e fluxo de balanço ruminal para ótimas taxas de fermentação e degradabilidade. Foram avaliados artigos de revista e periódicos selecionados, bem como livros de Nutrição de Ruminantes para embasar o assunto e compilá-los em um único material.
Referências
ALI, S.Z.; NAHIAN, M.K.; HOQUE, M.E. Extraction of cellulose from agro-industrial
wastes. In: BHAWANI, S.A.; KHAN, A.; AHMAD, F.B. Extraction of Natural Products from
Agro-Industrial Wastes. 1. ed., Cambridge: Elsevier, cap.19, p.319-348, 2023.
AMACHAWADI, R.G.; NAGARAJA, T.G. Pathogenesis of liver abscesses in cattle.
Veterinary Clinics: Food Animal Practice, v.38, n.3, p.335-346, 2022.
CABRAL, L.S.; WEIMER, P.J. Megasphaera elsdenii: Its role in ruminant nutrition and its
potential industrial application for organic acid biosynthesis. Animals, v.12, n.1, p.2019, 2024.
CAÑAVERAL-MARTÍNEZ, U.R.; SÁNCHEZ-SANTILLÁN, P.; TORRES-SALADO, N.;
HERNÁNDEZ-SÁNCHEZ, D.; HERRERA-PÉREZ, J.; AYALA-MONTER, M.A. Effect of
waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent
digestibility, and ruminal characteristics in calf diets. Veterinary World, v.16, n.3, p.421-430,
CASTILLO-LOPEZ, E.; PETRI, R.M.; RICCI, S.; RIVERA-CHACON, R.; SENER-
AYDEMIR, A.; SHARMA, S.; REISINGER, S.; ZEBELI, Q. Dynamic changes in salivation,
salivary composition, and rumen fermentation associated with duration of high-grain feeding
in cows. Journal of Dairy Science, v.104, n.4, p.4875-4892, 2021.
CECONI, I.; VIANO, S.A.; MÉNDEZ, D.G.; GONZÁLEZ, L.; DAVIES, P.; ELIZALDE, J.C.;
BRESSAN, E.; GRANDINI, D.; NAGARAJA, T.G.; TEDESCHI, L.O. Combined use of
monensin and virginiamycin to improve rumen and liver health and performance of feedlot-
finished steers. Translational Animal Science, v.6, n.4, p.1-9, 2022.
CUSACK, P.M.V.; DELL’OSA, D.; WILKES, G.; GRANDINI, D.; TEDESCHI, L.O.
Ruminal pH and its relationship with dry matter intake, growth rate, and feed conversion ratio
in commercial Australian feedlot cattle fed for 148 days. Australian Veterinary Journal, v.99,
n.8, p.319-325, 2021.
DA SILVA, E.I.C. Formulação e fabricação de rações para ruminantes. 1. ed., Belo Jardim:
Emanuel Isaque Cordeiro da Silva, 2021.
DIJKSTRA, J.; VAN GASTELEN, S.; DIEHO, K.; NICHOLS, K.; BANNIK, A. Review:
Rumen sensors: data and interpretation for key rumen metabolic processes. Animal, v.14, n.S1,
p.176-186, 2020.
DVOŘÁČKOVÁ, H.; DVOŘÁČEK, J.; GONZÁLEZ, P.H.; VLČEK, V. Effect of different
soil amendments on soil buffering capacity. PLoS ONE, v.17, n.2, p.e0263456, 2022.
ELMHADI, M.E.; ALI, D.K.; KHOGALI, M.K.; WANG, H. Subacute ruminal acidosis in
dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies.
Animal Nutrition, v.10, n.1, p.148-155, 2022.
ERDMAN, R.A. Dietary buffering requirements of the lactating dairy cow: a review. Journal
of Dairy Science, v.71, n.12, p.3246-3266, 1988.
FADAEE, S.; DANESH MESGARAN, M.; VAKILI, A. In vitro effect of the inorganic buffers
in the diets of holstein dairy cow varying in forage:concentrate ratios on the rumen acid load
and methane emission. Iranian Journal of Applied Animal Science, v.11, n.3, p.485-496,
FROSSASCO-DAVICINI, G.P.; ELIZONDO-SALAZAR, J.A. Efecto de distintas dietas sobre
el tiempo de rumia durante el periodo de predestete en reemplazos de lechería. Nutrición
Animal Tropical, v.14, n.1, p.50-74, 2020.
GÜNDÜZ, K.A.; BAŞÇIFTÇI, F. IoT-Based pH monitoring for detection of rumen acidosis.
Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.74, n.3, p.457-472, 2022.
GUNUN, N.; WANAPAT, M.; KAEWPILA, C.; KHOTA, W.; POLYORACH, S.;
CHERDTHONG, A.; SUWANNASING, R.; PATARAPREECHA, P.; KESORN, P.;
INTARAPANICH, P.; VIRIYAWATTANA, N.; GUNUN, P. Effect of heat processing of
rubber seed kernel on in vitro rumen biohydrogenation of fatty acids and fermentation.
Fermentation, v.9, n.2, p.143-154, 2022.
HASSAN, F.; GUO, Y.; LI, M.; TANG, Z.; PENG, L.; LIANG, X.; YANG, C. Effect of
methionine supplementation on rumen microbiota, fermentation, and amino acid metabolism in
in vitro cultures containing nitrate. Microorganisms, v.9, n.8, p.1717-1742, 2021.
IZADBAKHSH, M-H.; HASHEMZADEH, F.; ALIKHANI, M.; GHORBANI, G-R.;
KHORVASH, M.; HEIDARI, M.; GHAFFARI, M.H.; AHMADI, F. Effects of dietary fiber
level and forage particle size on growth, nutrient digestion, ruminal fermentation, and behavior
of weaned holstein calves under heat stress. Animals, v.14, n.2, p.275-293, 2024.
JANASWAMY, S.; YADAV, M.P.; HOQUE, M.; BHATTARAI, S.; AHMED, S. Cellulosic
fraction from agricultural biomass as a viable alternative for plastics and plastic products.
Industrial Crops and Products, v.179, n.1, p.114692-114700, 2022.
JIANG, Y.; DAI, P.; DAI, Q.; MA, J.; WANF, Z.; HU, R.; ZOU, H.; PENG, Q.; WANG, L.;
XUE, B. Effects of the higher concentrate ratio on the production performance, ruminal
fermentation, and morphological structure in male cattle-yaks. Veterinary Medicine and
Science, v.8, n.2, p.771-780, 2022.
KAMEL, M.S.; DAVIDSON, J.L.; VERMA, M.S. Strategies for bovine respiratory disease
(BRD) diagnosis and prognosis: A comprehensive overview. Animals, v.14, n.4, p.627, 2024.
KAUFMANN, W.; HAGEMEISTER, H.; DIRKSEN, G. Adaptation to changes in dietary
composition, level and frequency of feeding. In: RUCKEBUSCH, Y.; THIVEND, P.
Digestive physiology and metabolism in ruminants. 1. ed., Lancaster: MTP Press Limited,
cap.28, 1980. p.587-602.
KAZEMI, M.; MOKHTARPOUR, A. Chemical, mineral composition, in vitro ruminal
fermentation and buffering capacity of some rangeland-medicinal plants. Acta Scientiarum.
Animal Sciences, v.44, n.1, p.e55909, 2022.
KIM, H.; PARK, T.; KWON, I.; SEO, J. Specific inhibition of Streptococcus bovis by endolysin
LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to
carbohydrate metabolism. Journal of Animal Science and Biotechnology, v.12, n.1, p.93,
KOVÁCS, L.; RÓZSA, L.; PÁLFFY, M.; HEJEL, P.; BAUMGARTNER, W.; SZENCI, O.
Subacute ruminal acidosis in dairy cows - physiological background, risk factors and diagnostic
methods. Veterinarska Stanica, v.51, n.1, p.5-17, 2020.
KRÓL, B.; SŁUPCZYŃSKA, M.W.; WILK, M.; ASGHAR, M.; CWYNAR, P. Anaerobic
rumen fungi and fungal direct-fed microbials in ruminant feeding. Journal of Animal and
Feed Sciences, v.32, n.1, p.3-16, 2023.
LIAO, Y.L.; YAND, J. The release process of Cd on microplastics in a ruminant digestion in-
vitro method. Process Safety and Environmental Protection, v.157, n.1, p.266-272, 2022.
LI, C.; BEAUCHEMIN, K.A.; WANG, W. Feeding diets varying in forage proportion and
particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial
protein synthesis, digestibility, and milk production. Journal of Dairy Science, v.103, n.5,
p.4340-4354, 2020.
LI, M.M.; GHIMIRE, S.; WENNER, B.A.; KOHN, R.A.; FIRKINS, J.L.; GILL, B.;
HANIGAN, M.D. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics
in continuous cultures of ruminal contents. Journal of Dairy Science, v.105, n.11, p.8879-
, 2022.
MACÊDO, A.J.S..; CAMPOS, A.C.; COUTINHO, D.N.; FREITAS, C.A.S.; ANJOS, A.J.;
BEZERRA, L.R. Effect of the diet on ruminal parameters and rumen microbiota: review.
Revista Colombiana de Ciencia Animal. RECIA, v.14, n.1, p.e886, 2022.
MACLEOD, G.K.; COLUCCI, P.E.; MOORE, A.D.; GRIEVE, D.G.; LEWIS, N. The effects
of feeding frequency of concentrates and feeding sequence of hay on eating behavior, ruminal
environment and milk production in dairy cows. Canadian Journal of Animal Science, v.74,
n.1, p.103-113, 1994.
MAPHAM, P.H.; VORSTER, J.H. Heat stress in cattle, 2017. Disponível em: https://www.
cpdsolutions.co.za/Publications/article_uploads/Heat_stress_in_cattle.pdf. Acesso em: 26 jun.
MENSCHING, A.; BÜNEMANN, K.; MEYER, U.; VON SOOSTEN, D.; HUMMEL, J.;
SCHMITT, A.O.; SHARIFI, A.R.; DÄNICKE, S. Modeling reticular and ventral ruminal pH
of lactating dairy cows using ingestion and rumination behavior. Journal of Dairy Science,
v.103, n.8, p.7260-7275, 2020.
MIHOK, T.; HREŠKO ŠAMUDOVSKÁ, A.; BUJŇÁK, L.; TIMKOVIČOVÁ LACKOVÁ, P.
Determination of buffering capacity of the selected feeds used in swine nutrition. Journal of
Central European Agriculture, v.23, n.4, p.732-738, 2022.
MIKUŁA, R.; PSZCZOLA, M.; RZEWUSKA, K.; MUCHA, S.; NOWAK, W.; STRABEL, T.
The effect of rumination time on milk performance and methane emission of dairy cows fed
partial mixed ration based on maize silage. Animals, v.12, n.1, p.50, 2022.
MIZRAHI, I.; WALLACE, R.J.; MORAIS, S. The rumen microbiome: balancing food security
and environmental impacts. Nature Reviews Microbiology, v.19, n.9, p.553-566, 2021.
MOHARRERY, A. The determination of buffering capacity of some ruminant’s feedstuffs and
their cumulative effects on TMR ration. American Journal of Animal and Veterinary
Sciences, v.2, n.4, p.72-72, 2007.
MONTAÑO, M.F.; CHIRINO, J.O.; SALINAS-CHAVIRA, J.; ZINN PAS, R.A. Ruminal
alkalizing potential of brucite and sodium bicarbonate in feedlot cattle diets. Applied Animal
Science, v.38, n.4, p.326-334, 2022.
MONTEIRO, H.F; FACIOLA, A.P. Ruminal acidosis, bacterial
lipopolysaccharides. Journal of Animal Science, v.98, n.8, p.1-9, 2020.
changes,
and
NEVILLE, E.W.; FAHEY, A.G.; GATH, V.P.; MOLLOY, B.P.; TAYLOR, S.J.; MULLIGAN,
F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and
sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. Journal of
Dairy Science, v.102, n.9, p.8027-8039, 2019.
OETZEL, G.R. Subacute ruminal acidosis in dairy herds: physiology, pathophysiology,
milk fat responses, and nutritional management, Vancouver, BC, Canadá. In: 40th Annual
Conference, 40, 2007, Anais… Vancouver: American Association of Bovine Practitioners,
v.40, p.89-119, 2007.
PALMONARI, A.; FEDERICONI, A.; CAVALLINI, D.; SNIFFEN, C.J.; MAMMI, L.;
TURRONI, S.; D’AMICO, F.; HOLDER, P.; FORMIGONI, A. Impact of molasses on ruminal
volatile fatty acid production and microbiota composition in vitro. Animals, v.13, n.4, p.728,
PHESATCHA, K.; PHESATCHA, B.; WANAPAT, M; CHERDTHONG, A. The effect of
yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native
beef cattle. Animals, v.12, n.1, p.53-63, 2022
PRASANTH, C.R.; AJITHKUMAR, S. Effect of sub-acute ruminal acidosis (SARA) on milk
quality and production performances in commercial dairy farms-A review. International
Journal of Science, Environment and Technology, v.5, n.6, p.3731-3741, 2016.
SHI, W.; HAISAN, J.; INABU, Y.; SUGINO, T.; OBA, M. Effects of starch concentration of
close-up diets on rumen pH and plasma metabolite responses of dairy cows to grain challenges
after calving. Journal of Dairy Science, v.103, n.12, p.11461-11471, 2020.
SOLTIS, M.P.; MOOREY, S.E.; EGERT-McLEAN, A.M.; VOY, B.H.; SHEPHERD, E.A.;
MYER, P.R. Rumen biogeographical regions and microbiome variation. Microorganisms,
v.11, n.3, p.747-758, 2023.
SOUZA, A.O.; TAVEIRA, J.H.S.; FERNANDES, P.B.; COSTA, K.A.P.; COSTA, C.M.;
GURGEL, A.L.C.; SILVA, A.C.G.; COSTA, J.V.C.P. Chemical composition and fermentation
characteristics of maize silage with citrus pulp. Revista Brasileira de Saúde e Produção
Animal, v.23, n.6, p.e21352022, 2022.
SUARJANA, I.G.K; PG, K.T.; SUDIPA, P.H. Characteristics of rumen fluid, pH and number
of microbia. Journal of Veterinary and Animal Sciences, v.4, n.1, p.6-10, 2021.
SUN, X.; CHENG, L.; JONKER, A.; MUNIDASA, S.; PACHECO, D. A review: Plant
carbohydrate types—The potential impact on ruminant methane emissions. Frontiers in
Veterinary Science, v.9, n.1, p.880115-880129, 2022.
UNGERFELD, E.M.; CANCINO-PADILLA, N.; VERA-AGUILERA, N.; SCORCIONE,
M.C.; SALDIVIA, M.; LAGOS-PAILLA, L.; VERA, M.; CERDA, C.; MUÑOZ, C.;
URRUTIA, N.; MARTÍNEZ, E.D. Effects of type of substrate and dilution rate on fermentation
in serial rumen mixed cultures. Frontiers in Microbiology, v.15, n.1, p.1356966-1356986,
VARGAS, J.E.; LÓPEZ-FERRERAS, L.; ANDRÉS, S.; MATEOS, I.; HORST, E.H.; LÓPEZ,
S. Differential diet and pH effects on ruminal microbiota, fermentation pattern and fatty acid
hydrogenation in RUSITEC continuous cultures. Fermentation, v.4, n.4, p.320-338, 2023.
VASILEVSKIY, N.V.; YELETSKAYA, T.A. Physiological aspects of complete mixed diet
digestion in complex stomach of ruminants on the example of cattle (Bos taurus taurus).
Agricultural Biology, v.54, n.4, p.787-797, 2019.
VENTER, C. The role of particle length in feed rations. Stockfarm, v.10, n.5, p.38-39, 2020.
WANAPAT, M.; VIENNASAY, B.; MATRA, M.; TOTAKUL, P.; PHESATCHA, B.;
Ampapon, T.; WANAPAT, S. Supplementation of fruit peel pellet containing phytonutrients to
manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein
synthesis. Journal of the Science of Food and Agriculture, v.101, n.11, p.4543-4550, 2021.
WANG, L.; ZHANG, G.; LI, Y.; ZHANG, Y. Effects of high forage/concentrate diet on volatile
fatty acid production and the microorganisms involved in VFA production in cow rumen.
Animals, v.10, n.2, p.223-234, 2020a.
WANG, L.; LI, Y.; ZHANG, Y.; WANG, L. The effects of different concentrate-to-forage ratio
diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle.
Animals, v.10, n.6, p.957-974, 2020b.
XIAO, J.; CHEN, T.; ALUGONGO, G.M.; KHAN, M.Z.; LI, T.; MA, J.; LIU, S.; WANG, W.;
WANG, Y.; LI, S.; CAO, Z. Effect of the length of oat hay on growth performance, health
status, behavior parameters and rumen fermentation of holstein female calves. Metabolites,
v.11, n.12, p.890, 2021.
ZAPATA, O.; CERVANTES, A.; BARRERAS, A.; MONGE-NAVARRO, F.; GONZÁLEZ-
VIZCARRA, V.M.; ESTRADA-ANGULO, A.; URÍAS-ESTRADA, J.D., CORONA, L.;
ZINN, R.A.; MARTÍNEZ-ALVAREZ, I.G.; PLASCENCIA, A. Effects of single or combined
supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and
total tract digestion in lambs. Small Ruminant Research, v.204, n.1, p.106538-106543, 2021.
ZHANG, Z.; LI, Y.; ZHANG, J.; PENG, N.; LIANG, Y.; ZHAO, S. High-Titer lactic acid
production by Pediococcus acidilactici PA204 from corn stover through fed-batch
simultaneous saccharification and fermentation. Microorganisms, v.8, n.10, p.1491-1499,
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.