Publicado 2025-07-01
Palavras-chave
- Fisiologia,
- pH,
- equilíbrio ruminal,
- fermentação,
- tamponantes
Como Citar

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
O rúmen é um ecossistema e ambiente majoritariamente aquoso e complexo que recebe o alimento ingerido, que é misturado e processado mediante a fermentação para a degradabilidade, digestão e utilização pelo animal. Os microrganismos ruminais (fungos, protozoários e bactérias) são os incumbidos de realizar a fermentação mediante a produção de enzimas que exercem um efeito específico sobre os diferentes constituintes da dieta, tendo como componentes finais os ácidos graxos voláteis (AGVs), amônia (NH3) e metano (CH4). A microbiota ruminal depende da estabilidade do ambiente em que vivem para sobreviver, multiplicar-se e realizar a fermentação dos alimentos, porém, cada espécie e tipo de microrganismo presente no rúmen possui uma exigência particular de pH, temperatura, oxigênio e pressão osmótica para tal. A população ruminal depende do tipo de alimentação que o
animal recebe, que serve de substrato para a fermentação e determina o tipo e a quantidade de produtos produzidos durante esse processo e, portanto, o pH ruminal ao longo do dia. Dietas ricas em concentrado (amido) e baixa fibra resultam em um baixo pH (ácido), enquanto dietas ricas em fibra e baixo amido (volumosos, por exemplo) produzem um pH elevado (próximo da neutralidade). Este é o escopo desta revisão bibliográfica sistemática: apresentar a importância do pH sobre a dinâmica e fluxo de balanço ruminal para ótimas taxas de fermentação e degradabilidade. Foram avaliados artigos de revista e periódicos selecionados, bem como livros de Nutrição de Ruminantes para embasar o assunto e compilá-los em um único material.
Downloads
Referências
- ALI, S.Z.; NAHIAN, M.K.; HOQUE, M.E. Extraction of cellulose from agro-industrial
- wastes. In: BHAWANI, S.A.; KHAN, A.; AHMAD, F.B. Extraction of Natural Products from
- Agro-Industrial Wastes. 1. ed., Cambridge: Elsevier, cap.19, p.319-348, 2023.
- AMACHAWADI, R.G.; NAGARAJA, T.G. Pathogenesis of liver abscesses in cattle.
- Veterinary Clinics: Food Animal Practice, v.38, n.3, p.335-346, 2022.
- CABRAL, L.S.; WEIMER, P.J. Megasphaera elsdenii: Its role in ruminant nutrition and its
- potential industrial application for organic acid biosynthesis. Animals, v.12, n.1, p.2019, 2024.
- CAÑAVERAL-MARTÍNEZ, U.R.; SÁNCHEZ-SANTILLÁN, P.; TORRES-SALADO, N.;
- HERNÁNDEZ-SÁNCHEZ, D.; HERRERA-PÉREZ, J.; AYALA-MONTER, M.A. Effect of
- waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent
- digestibility, and ruminal characteristics in calf diets. Veterinary World, v.16, n.3, p.421-430,
- CASTILLO-LOPEZ, E.; PETRI, R.M.; RICCI, S.; RIVERA-CHACON, R.; SENER-
- AYDEMIR, A.; SHARMA, S.; REISINGER, S.; ZEBELI, Q. Dynamic changes in salivation,
- salivary composition, and rumen fermentation associated with duration of high-grain feeding
- in cows. Journal of Dairy Science, v.104, n.4, p.4875-4892, 2021.
- CECONI, I.; VIANO, S.A.; MÉNDEZ, D.G.; GONZÁLEZ, L.; DAVIES, P.; ELIZALDE, J.C.;
- BRESSAN, E.; GRANDINI, D.; NAGARAJA, T.G.; TEDESCHI, L.O. Combined use of
- monensin and virginiamycin to improve rumen and liver health and performance of feedlot-
- finished steers. Translational Animal Science, v.6, n.4, p.1-9, 2022.
- CUSACK, P.M.V.; DELL’OSA, D.; WILKES, G.; GRANDINI, D.; TEDESCHI, L.O.
- Ruminal pH and its relationship with dry matter intake, growth rate, and feed conversion ratio
- in commercial Australian feedlot cattle fed for 148 days. Australian Veterinary Journal, v.99,
- n.8, p.319-325, 2021.
- DA SILVA, E.I.C. Formulação e fabricação de rações para ruminantes. 1. ed., Belo Jardim:
- Emanuel Isaque Cordeiro da Silva, 2021.
- DIJKSTRA, J.; VAN GASTELEN, S.; DIEHO, K.; NICHOLS, K.; BANNIK, A. Review:
- Rumen sensors: data and interpretation for key rumen metabolic processes. Animal, v.14, n.S1,
- p.176-186, 2020.
- DVOŘÁČKOVÁ, H.; DVOŘÁČEK, J.; GONZÁLEZ, P.H.; VLČEK, V. Effect of different
- soil amendments on soil buffering capacity. PLoS ONE, v.17, n.2, p.e0263456, 2022.
- ELMHADI, M.E.; ALI, D.K.; KHOGALI, M.K.; WANG, H. Subacute ruminal acidosis in
- dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies.
- Animal Nutrition, v.10, n.1, p.148-155, 2022.
- ERDMAN, R.A. Dietary buffering requirements of the lactating dairy cow: a review. Journal
- of Dairy Science, v.71, n.12, p.3246-3266, 1988.
- FADAEE, S.; DANESH MESGARAN, M.; VAKILI, A. In vitro effect of the inorganic buffers
- in the diets of holstein dairy cow varying in forage:concentrate ratios on the rumen acid load
- and methane emission. Iranian Journal of Applied Animal Science, v.11, n.3, p.485-496,
- FROSSASCO-DAVICINI, G.P.; ELIZONDO-SALAZAR, J.A. Efecto de distintas dietas sobre
- el tiempo de rumia durante el periodo de predestete en reemplazos de lechería. Nutrición
- Animal Tropical, v.14, n.1, p.50-74, 2020.
- GÜNDÜZ, K.A.; BAŞÇIFTÇI, F. IoT-Based pH monitoring for detection of rumen acidosis.
- Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.74, n.3, p.457-472, 2022.
- GUNUN, N.; WANAPAT, M.; KAEWPILA, C.; KHOTA, W.; POLYORACH, S.;
- CHERDTHONG, A.; SUWANNASING, R.; PATARAPREECHA, P.; KESORN, P.;
- INTARAPANICH, P.; VIRIYAWATTANA, N.; GUNUN, P. Effect of heat processing of
- rubber seed kernel on in vitro rumen biohydrogenation of fatty acids and fermentation.
- Fermentation, v.9, n.2, p.143-154, 2022.
- HASSAN, F.; GUO, Y.; LI, M.; TANG, Z.; PENG, L.; LIANG, X.; YANG, C. Effect of
- methionine supplementation on rumen microbiota, fermentation, and amino acid metabolism in
- in vitro cultures containing nitrate. Microorganisms, v.9, n.8, p.1717-1742, 2021.
- IZADBAKHSH, M-H.; HASHEMZADEH, F.; ALIKHANI, M.; GHORBANI, G-R.;
- KHORVASH, M.; HEIDARI, M.; GHAFFARI, M.H.; AHMADI, F. Effects of dietary fiber
- level and forage particle size on growth, nutrient digestion, ruminal fermentation, and behavior
- of weaned holstein calves under heat stress. Animals, v.14, n.2, p.275-293, 2024.
- JANASWAMY, S.; YADAV, M.P.; HOQUE, M.; BHATTARAI, S.; AHMED, S. Cellulosic
- fraction from agricultural biomass as a viable alternative for plastics and plastic products.
- Industrial Crops and Products, v.179, n.1, p.114692-114700, 2022.
- JIANG, Y.; DAI, P.; DAI, Q.; MA, J.; WANF, Z.; HU, R.; ZOU, H.; PENG, Q.; WANG, L.;
- XUE, B. Effects of the higher concentrate ratio on the production performance, ruminal
- fermentation, and morphological structure in male cattle-yaks. Veterinary Medicine and
- Science, v.8, n.2, p.771-780, 2022.
- KAMEL, M.S.; DAVIDSON, J.L.; VERMA, M.S. Strategies for bovine respiratory disease
- (BRD) diagnosis and prognosis: A comprehensive overview. Animals, v.14, n.4, p.627, 2024.
- KAUFMANN, W.; HAGEMEISTER, H.; DIRKSEN, G. Adaptation to changes in dietary
- composition, level and frequency of feeding. In: RUCKEBUSCH, Y.; THIVEND, P.
- Digestive physiology and metabolism in ruminants. 1. ed., Lancaster: MTP Press Limited,
- cap.28, 1980. p.587-602.
- KAZEMI, M.; MOKHTARPOUR, A. Chemical, mineral composition, in vitro ruminal
- fermentation and buffering capacity of some rangeland-medicinal plants. Acta Scientiarum.
- Animal Sciences, v.44, n.1, p.e55909, 2022.
- KIM, H.; PARK, T.; KWON, I.; SEO, J. Specific inhibition of Streptococcus bovis by endolysin
- LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to
- carbohydrate metabolism. Journal of Animal Science and Biotechnology, v.12, n.1, p.93,
- KOVÁCS, L.; RÓZSA, L.; PÁLFFY, M.; HEJEL, P.; BAUMGARTNER, W.; SZENCI, O.
- Subacute ruminal acidosis in dairy cows - physiological background, risk factors and diagnostic
- methods. Veterinarska Stanica, v.51, n.1, p.5-17, 2020.
- KRÓL, B.; SŁUPCZYŃSKA, M.W.; WILK, M.; ASGHAR, M.; CWYNAR, P. Anaerobic
- rumen fungi and fungal direct-fed microbials in ruminant feeding. Journal of Animal and
- Feed Sciences, v.32, n.1, p.3-16, 2023.
- LIAO, Y.L.; YAND, J. The release process of Cd on microplastics in a ruminant digestion in-
- vitro method. Process Safety and Environmental Protection, v.157, n.1, p.266-272, 2022.
- LI, C.; BEAUCHEMIN, K.A.; WANG, W. Feeding diets varying in forage proportion and
- particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial
- protein synthesis, digestibility, and milk production. Journal of Dairy Science, v.103, n.5,
- p.4340-4354, 2020.
- LI, M.M.; GHIMIRE, S.; WENNER, B.A.; KOHN, R.A.; FIRKINS, J.L.; GILL, B.;
- HANIGAN, M.D. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics
- in continuous cultures of ruminal contents. Journal of Dairy Science, v.105, n.11, p.8879-
- , 2022.
- MACÊDO, A.J.S..; CAMPOS, A.C.; COUTINHO, D.N.; FREITAS, C.A.S.; ANJOS, A.J.;
- BEZERRA, L.R. Effect of the diet on ruminal parameters and rumen microbiota: review.
- Revista Colombiana de Ciencia Animal. RECIA, v.14, n.1, p.e886, 2022.
- MACLEOD, G.K.; COLUCCI, P.E.; MOORE, A.D.; GRIEVE, D.G.; LEWIS, N. The effects
- of feeding frequency of concentrates and feeding sequence of hay on eating behavior, ruminal
- environment and milk production in dairy cows. Canadian Journal of Animal Science, v.74,
- n.1, p.103-113, 1994.
- MAPHAM, P.H.; VORSTER, J.H. Heat stress in cattle, 2017. Disponível em: https://www.
- cpdsolutions.co.za/Publications/article_uploads/Heat_stress_in_cattle.pdf. Acesso em: 26 jun.
- MENSCHING, A.; BÜNEMANN, K.; MEYER, U.; VON SOOSTEN, D.; HUMMEL, J.;
- SCHMITT, A.O.; SHARIFI, A.R.; DÄNICKE, S. Modeling reticular and ventral ruminal pH
- of lactating dairy cows using ingestion and rumination behavior. Journal of Dairy Science,
- v.103, n.8, p.7260-7275, 2020.
- MIHOK, T.; HREŠKO ŠAMUDOVSKÁ, A.; BUJŇÁK, L.; TIMKOVIČOVÁ LACKOVÁ, P.
- Determination of buffering capacity of the selected feeds used in swine nutrition. Journal of
- Central European Agriculture, v.23, n.4, p.732-738, 2022.
- MIKUŁA, R.; PSZCZOLA, M.; RZEWUSKA, K.; MUCHA, S.; NOWAK, W.; STRABEL, T.
- The effect of rumination time on milk performance and methane emission of dairy cows fed
- partial mixed ration based on maize silage. Animals, v.12, n.1, p.50, 2022.
- MIZRAHI, I.; WALLACE, R.J.; MORAIS, S. The rumen microbiome: balancing food security
- and environmental impacts. Nature Reviews Microbiology, v.19, n.9, p.553-566, 2021.
- MOHARRERY, A. The determination of buffering capacity of some ruminant’s feedstuffs and
- their cumulative effects on TMR ration. American Journal of Animal and Veterinary
- Sciences, v.2, n.4, p.72-72, 2007.
- MONTAÑO, M.F.; CHIRINO, J.O.; SALINAS-CHAVIRA, J.; ZINN PAS, R.A. Ruminal
- alkalizing potential of brucite and sodium bicarbonate in feedlot cattle diets. Applied Animal
- Science, v.38, n.4, p.326-334, 2022.
- MONTEIRO, H.F; FACIOLA, A.P. Ruminal acidosis, bacterial
- lipopolysaccharides. Journal of Animal Science, v.98, n.8, p.1-9, 2020.
- changes,
- and
- NEVILLE, E.W.; FAHEY, A.G.; GATH, V.P.; MOLLOY, B.P.; TAYLOR, S.J.; MULLIGAN,
- F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and
- sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. Journal of
- Dairy Science, v.102, n.9, p.8027-8039, 2019.
- OETZEL, G.R. Subacute ruminal acidosis in dairy herds: physiology, pathophysiology,
- milk fat responses, and nutritional management, Vancouver, BC, Canadá. In: 40th Annual
- Conference, 40, 2007, Anais… Vancouver: American Association of Bovine Practitioners,
- v.40, p.89-119, 2007.
- PALMONARI, A.; FEDERICONI, A.; CAVALLINI, D.; SNIFFEN, C.J.; MAMMI, L.;
- TURRONI, S.; D’AMICO, F.; HOLDER, P.; FORMIGONI, A. Impact of molasses on ruminal
- volatile fatty acid production and microbiota composition in vitro. Animals, v.13, n.4, p.728,
- PHESATCHA, K.; PHESATCHA, B.; WANAPAT, M; CHERDTHONG, A. The effect of
- yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native
- beef cattle. Animals, v.12, n.1, p.53-63, 2022
- PRASANTH, C.R.; AJITHKUMAR, S. Effect of sub-acute ruminal acidosis (SARA) on milk
- quality and production performances in commercial dairy farms-A review. International
- Journal of Science, Environment and Technology, v.5, n.6, p.3731-3741, 2016.
- SHI, W.; HAISAN, J.; INABU, Y.; SUGINO, T.; OBA, M. Effects of starch concentration of
- close-up diets on rumen pH and plasma metabolite responses of dairy cows to grain challenges
- after calving. Journal of Dairy Science, v.103, n.12, p.11461-11471, 2020.
- SOLTIS, M.P.; MOOREY, S.E.; EGERT-McLEAN, A.M.; VOY, B.H.; SHEPHERD, E.A.;
- MYER, P.R. Rumen biogeographical regions and microbiome variation. Microorganisms,
- v.11, n.3, p.747-758, 2023.
- SOUZA, A.O.; TAVEIRA, J.H.S.; FERNANDES, P.B.; COSTA, K.A.P.; COSTA, C.M.;
- GURGEL, A.L.C.; SILVA, A.C.G.; COSTA, J.V.C.P. Chemical composition and fermentation
- characteristics of maize silage with citrus pulp. Revista Brasileira de Saúde e Produção
- Animal, v.23, n.6, p.e21352022, 2022.
- SUARJANA, I.G.K; PG, K.T.; SUDIPA, P.H. Characteristics of rumen fluid, pH and number
- of microbia. Journal of Veterinary and Animal Sciences, v.4, n.1, p.6-10, 2021.
- SUN, X.; CHENG, L.; JONKER, A.; MUNIDASA, S.; PACHECO, D. A review: Plant
- carbohydrate types—The potential impact on ruminant methane emissions. Frontiers in
- Veterinary Science, v.9, n.1, p.880115-880129, 2022.
- UNGERFELD, E.M.; CANCINO-PADILLA, N.; VERA-AGUILERA, N.; SCORCIONE,
- M.C.; SALDIVIA, M.; LAGOS-PAILLA, L.; VERA, M.; CERDA, C.; MUÑOZ, C.;
- URRUTIA, N.; MARTÍNEZ, E.D. Effects of type of substrate and dilution rate on fermentation
- in serial rumen mixed cultures. Frontiers in Microbiology, v.15, n.1, p.1356966-1356986,
- VARGAS, J.E.; LÓPEZ-FERRERAS, L.; ANDRÉS, S.; MATEOS, I.; HORST, E.H.; LÓPEZ,
- S. Differential diet and pH effects on ruminal microbiota, fermentation pattern and fatty acid
- hydrogenation in RUSITEC continuous cultures. Fermentation, v.4, n.4, p.320-338, 2023.
- VASILEVSKIY, N.V.; YELETSKAYA, T.A. Physiological aspects of complete mixed diet
- digestion in complex stomach of ruminants on the example of cattle (Bos taurus taurus).
- Agricultural Biology, v.54, n.4, p.787-797, 2019.
- VENTER, C. The role of particle length in feed rations. Stockfarm, v.10, n.5, p.38-39, 2020.
- WANAPAT, M.; VIENNASAY, B.; MATRA, M.; TOTAKUL, P.; PHESATCHA, B.;
- Ampapon, T.; WANAPAT, S. Supplementation of fruit peel pellet containing phytonutrients to
- manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein
- synthesis. Journal of the Science of Food and Agriculture, v.101, n.11, p.4543-4550, 2021.
- WANG, L.; ZHANG, G.; LI, Y.; ZHANG, Y. Effects of high forage/concentrate diet on volatile
- fatty acid production and the microorganisms involved in VFA production in cow rumen.
- Animals, v.10, n.2, p.223-234, 2020a.
- WANG, L.; LI, Y.; ZHANG, Y.; WANG, L. The effects of different concentrate-to-forage ratio
- diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle.
- Animals, v.10, n.6, p.957-974, 2020b.
- XIAO, J.; CHEN, T.; ALUGONGO, G.M.; KHAN, M.Z.; LI, T.; MA, J.; LIU, S.; WANG, W.;
- WANG, Y.; LI, S.; CAO, Z. Effect of the length of oat hay on growth performance, health
- status, behavior parameters and rumen fermentation of holstein female calves. Metabolites,
- v.11, n.12, p.890, 2021.
- ZAPATA, O.; CERVANTES, A.; BARRERAS, A.; MONGE-NAVARRO, F.; GONZÁLEZ-
- VIZCARRA, V.M.; ESTRADA-ANGULO, A.; URÍAS-ESTRADA, J.D., CORONA, L.;
- ZINN, R.A.; MARTÍNEZ-ALVAREZ, I.G.; PLASCENCIA, A. Effects of single or combined
- supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and
- total tract digestion in lambs. Small Ruminant Research, v.204, n.1, p.106538-106543, 2021.
- ZHANG, Z.; LI, Y.; ZHANG, J.; PENG, N.; LIANG, Y.; ZHAO, S. High-Titer lactic acid
- production by Pediococcus acidilactici PA204 from corn stover through fed-batch
- simultaneous saccharification and fermentation. Microorganisms, v.8, n.10, p.1491-1499,