v. 35 n. 2 (2025): Revista Ciência Animal
Artigos de Revisão

IMPORTÂNCIA DO pH SOBRE A DINÂMICA FUNCIONAL DO RÚMEN

Emanuel Isaque Cordeiro DA SILVA
Instituto Agronômico de Pernambuco (UFRPE)
Eduarda Carvalho da Silva FONTAIN
Criação de Caprinos e Ovinos, Belo Jardim
Mariana Ribeiro Castellano PEIXOTO
Medicina Veterinária (CECA/UFAL)

Publicado 2025-07-01

Palavras-chave

  • Fisiologia,
  • pH,
  • equilíbrio ruminal,
  • fermentação,
  • tamponantes

Como Citar

SILVA, E. I. C. D.; FONTAIN, E. C. da S.; PEIXOTO, M. R. C. IMPORTÂNCIA DO pH SOBRE A DINÂMICA FUNCIONAL DO RÚMEN. Ciência Animal, [S. l.], v. 35, n. 2, p. 78–95, 2025. Disponível em: https://revistas.uece.br/index.php/cienciaanimal/article/view/15783. Acesso em: 9 jan. 2026.

Resumo

O rúmen é um ecossistema e ambiente majoritariamente aquoso e complexo que recebe o alimento ingerido, que é misturado e processado mediante a fermentação para a degradabilidade, digestão e utilização pelo animal. Os microrganismos ruminais (fungos, protozoários e bactérias) são os incumbidos de realizar a fermentação mediante a produção de enzimas que exercem um efeito específico sobre os diferentes constituintes da dieta, tendo como componentes finais os ácidos graxos voláteis (AGVs), amônia (NH3) e metano (CH4). A microbiota ruminal depende da estabilidade do ambiente em que vivem para sobreviver, multiplicar-se e realizar a fermentação dos alimentos, porém, cada espécie e tipo de microrganismo presente no rúmen possui uma exigência particular de pH, temperatura, oxigênio e pressão osmótica para tal. A população ruminal depende do tipo de alimentação que o
animal recebe, que serve de substrato para a fermentação e determina o tipo e a quantidade de produtos produzidos durante esse processo e, portanto, o pH ruminal ao longo do dia. Dietas ricas em concentrado (amido) e baixa fibra resultam em um baixo pH (ácido), enquanto dietas ricas em fibra e baixo amido (volumosos, por exemplo) produzem um pH elevado (próximo da neutralidade). Este é o escopo desta revisão bibliográfica sistemática: apresentar a importância do pH sobre a dinâmica e fluxo de balanço ruminal para ótimas taxas de fermentação e degradabilidade. Foram avaliados artigos de revista e periódicos selecionados, bem como livros de Nutrição de Ruminantes para embasar o assunto e compilá-los em um único material.

Downloads

Não há dados estatísticos.

Referências

  1. ALI, S.Z.; NAHIAN, M.K.; HOQUE, M.E. Extraction of cellulose from agro-industrial
  2. wastes. In: BHAWANI, S.A.; KHAN, A.; AHMAD, F.B. Extraction of Natural Products from
  3. Agro-Industrial Wastes. 1. ed., Cambridge: Elsevier, cap.19, p.319-348, 2023.
  4. AMACHAWADI, R.G.; NAGARAJA, T.G. Pathogenesis of liver abscesses in cattle.
  5. Veterinary Clinics: Food Animal Practice, v.38, n.3, p.335-346, 2022.
  6. CABRAL, L.S.; WEIMER, P.J. Megasphaera elsdenii: Its role in ruminant nutrition and its
  7. potential industrial application for organic acid biosynthesis. Animals, v.12, n.1, p.2019, 2024.
  8. CAÑAVERAL-MARTÍNEZ, U.R.; SÁNCHEZ-SANTILLÁN, P.; TORRES-SALADO, N.;
  9. HERNÁNDEZ-SÁNCHEZ, D.; HERRERA-PÉREZ, J.; AYALA-MONTER, M.A. Effect of
  10. waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent
  11. digestibility, and ruminal characteristics in calf diets. Veterinary World, v.16, n.3, p.421-430,
  12. CASTILLO-LOPEZ, E.; PETRI, R.M.; RICCI, S.; RIVERA-CHACON, R.; SENER-
  13. AYDEMIR, A.; SHARMA, S.; REISINGER, S.; ZEBELI, Q. Dynamic changes in salivation,
  14. salivary composition, and rumen fermentation associated with duration of high-grain feeding
  15. in cows. Journal of Dairy Science, v.104, n.4, p.4875-4892, 2021.
  16. CECONI, I.; VIANO, S.A.; MÉNDEZ, D.G.; GONZÁLEZ, L.; DAVIES, P.; ELIZALDE, J.C.;
  17. BRESSAN, E.; GRANDINI, D.; NAGARAJA, T.G.; TEDESCHI, L.O. Combined use of
  18. monensin and virginiamycin to improve rumen and liver health and performance of feedlot-
  19. finished steers. Translational Animal Science, v.6, n.4, p.1-9, 2022.
  20. CUSACK, P.M.V.; DELL’OSA, D.; WILKES, G.; GRANDINI, D.; TEDESCHI, L.O.
  21. Ruminal pH and its relationship with dry matter intake, growth rate, and feed conversion ratio
  22. in commercial Australian feedlot cattle fed for 148 days. Australian Veterinary Journal, v.99,
  23. n.8, p.319-325, 2021.
  24. DA SILVA, E.I.C. Formulação e fabricação de rações para ruminantes. 1. ed., Belo Jardim:
  25. Emanuel Isaque Cordeiro da Silva, 2021.
  26. DIJKSTRA, J.; VAN GASTELEN, S.; DIEHO, K.; NICHOLS, K.; BANNIK, A. Review:
  27. Rumen sensors: data and interpretation for key rumen metabolic processes. Animal, v.14, n.S1,
  28. p.176-186, 2020.
  29. DVOŘÁČKOVÁ, H.; DVOŘÁČEK, J.; GONZÁLEZ, P.H.; VLČEK, V. Effect of different
  30. soil amendments on soil buffering capacity. PLoS ONE, v.17, n.2, p.e0263456, 2022.
  31. ELMHADI, M.E.; ALI, D.K.; KHOGALI, M.K.; WANG, H. Subacute ruminal acidosis in
  32. dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies.
  33. Animal Nutrition, v.10, n.1, p.148-155, 2022.
  34. ERDMAN, R.A. Dietary buffering requirements of the lactating dairy cow: a review. Journal
  35. of Dairy Science, v.71, n.12, p.3246-3266, 1988.
  36. FADAEE, S.; DANESH MESGARAN, M.; VAKILI, A. In vitro effect of the inorganic buffers
  37. in the diets of holstein dairy cow varying in forage:concentrate ratios on the rumen acid load
  38. and methane emission. Iranian Journal of Applied Animal Science, v.11, n.3, p.485-496,
  39. FROSSASCO-DAVICINI, G.P.; ELIZONDO-SALAZAR, J.A. Efecto de distintas dietas sobre
  40. el tiempo de rumia durante el periodo de predestete en reemplazos de lechería. Nutrición
  41. Animal Tropical, v.14, n.1, p.50-74, 2020.
  42. GÜNDÜZ, K.A.; BAŞÇIFTÇI, F. IoT-Based pH monitoring for detection of rumen acidosis.
  43. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.74, n.3, p.457-472, 2022.
  44. GUNUN, N.; WANAPAT, M.; KAEWPILA, C.; KHOTA, W.; POLYORACH, S.;
  45. CHERDTHONG, A.; SUWANNASING, R.; PATARAPREECHA, P.; KESORN, P.;
  46. INTARAPANICH, P.; VIRIYAWATTANA, N.; GUNUN, P. Effect of heat processing of
  47. rubber seed kernel on in vitro rumen biohydrogenation of fatty acids and fermentation.
  48. Fermentation, v.9, n.2, p.143-154, 2022.
  49. HASSAN, F.; GUO, Y.; LI, M.; TANG, Z.; PENG, L.; LIANG, X.; YANG, C. Effect of
  50. methionine supplementation on rumen microbiota, fermentation, and amino acid metabolism in
  51. in vitro cultures containing nitrate. Microorganisms, v.9, n.8, p.1717-1742, 2021.
  52. IZADBAKHSH, M-H.; HASHEMZADEH, F.; ALIKHANI, M.; GHORBANI, G-R.;
  53. KHORVASH, M.; HEIDARI, M.; GHAFFARI, M.H.; AHMADI, F. Effects of dietary fiber
  54. level and forage particle size on growth, nutrient digestion, ruminal fermentation, and behavior
  55. of weaned holstein calves under heat stress. Animals, v.14, n.2, p.275-293, 2024.
  56. JANASWAMY, S.; YADAV, M.P.; HOQUE, M.; BHATTARAI, S.; AHMED, S. Cellulosic
  57. fraction from agricultural biomass as a viable alternative for plastics and plastic products.
  58. Industrial Crops and Products, v.179, n.1, p.114692-114700, 2022.
  59. JIANG, Y.; DAI, P.; DAI, Q.; MA, J.; WANF, Z.; HU, R.; ZOU, H.; PENG, Q.; WANG, L.;
  60. XUE, B. Effects of the higher concentrate ratio on the production performance, ruminal
  61. fermentation, and morphological structure in male cattle-yaks. Veterinary Medicine and
  62. Science, v.8, n.2, p.771-780, 2022.
  63. KAMEL, M.S.; DAVIDSON, J.L.; VERMA, M.S. Strategies for bovine respiratory disease
  64. (BRD) diagnosis and prognosis: A comprehensive overview. Animals, v.14, n.4, p.627, 2024.
  65. KAUFMANN, W.; HAGEMEISTER, H.; DIRKSEN, G. Adaptation to changes in dietary
  66. composition, level and frequency of feeding. In: RUCKEBUSCH, Y.; THIVEND, P.
  67. Digestive physiology and metabolism in ruminants. 1. ed., Lancaster: MTP Press Limited,
  68. cap.28, 1980. p.587-602.
  69. KAZEMI, M.; MOKHTARPOUR, A. Chemical, mineral composition, in vitro ruminal
  70. fermentation and buffering capacity of some rangeland-medicinal plants. Acta Scientiarum.
  71. Animal Sciences, v.44, n.1, p.e55909, 2022.
  72. KIM, H.; PARK, T.; KWON, I.; SEO, J. Specific inhibition of Streptococcus bovis by endolysin
  73. LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to
  74. carbohydrate metabolism. Journal of Animal Science and Biotechnology, v.12, n.1, p.93,
  75. KOVÁCS, L.; RÓZSA, L.; PÁLFFY, M.; HEJEL, P.; BAUMGARTNER, W.; SZENCI, O.
  76. Subacute ruminal acidosis in dairy cows - physiological background, risk factors and diagnostic
  77. methods. Veterinarska Stanica, v.51, n.1, p.5-17, 2020.
  78. KRÓL, B.; SŁUPCZYŃSKA, M.W.; WILK, M.; ASGHAR, M.; CWYNAR, P. Anaerobic
  79. rumen fungi and fungal direct-fed microbials in ruminant feeding. Journal of Animal and
  80. Feed Sciences, v.32, n.1, p.3-16, 2023.
  81. LIAO, Y.L.; YAND, J. The release process of Cd on microplastics in a ruminant digestion in-
  82. vitro method. Process Safety and Environmental Protection, v.157, n.1, p.266-272, 2022.
  83. LI, C.; BEAUCHEMIN, K.A.; WANG, W. Feeding diets varying in forage proportion and
  84. particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial
  85. protein synthesis, digestibility, and milk production. Journal of Dairy Science, v.103, n.5,
  86. p.4340-4354, 2020.
  87. LI, M.M.; GHIMIRE, S.; WENNER, B.A.; KOHN, R.A.; FIRKINS, J.L.; GILL, B.;
  88. HANIGAN, M.D. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics
  89. in continuous cultures of ruminal contents. Journal of Dairy Science, v.105, n.11, p.8879-
  90. , 2022.
  91. MACÊDO, A.J.S..; CAMPOS, A.C.; COUTINHO, D.N.; FREITAS, C.A.S.; ANJOS, A.J.;
  92. BEZERRA, L.R. Effect of the diet on ruminal parameters and rumen microbiota: review.
  93. Revista Colombiana de Ciencia Animal. RECIA, v.14, n.1, p.e886, 2022.
  94. MACLEOD, G.K.; COLUCCI, P.E.; MOORE, A.D.; GRIEVE, D.G.; LEWIS, N. The effects
  95. of feeding frequency of concentrates and feeding sequence of hay on eating behavior, ruminal
  96. environment and milk production in dairy cows. Canadian Journal of Animal Science, v.74,
  97. n.1, p.103-113, 1994.
  98. MAPHAM, P.H.; VORSTER, J.H. Heat stress in cattle, 2017. Disponível em: https://www.
  99. cpdsolutions.co.za/Publications/article_uploads/Heat_stress_in_cattle.pdf. Acesso em: 26 jun.
  100. MENSCHING, A.; BÜNEMANN, K.; MEYER, U.; VON SOOSTEN, D.; HUMMEL, J.;
  101. SCHMITT, A.O.; SHARIFI, A.R.; DÄNICKE, S. Modeling reticular and ventral ruminal pH
  102. of lactating dairy cows using ingestion and rumination behavior. Journal of Dairy Science,
  103. v.103, n.8, p.7260-7275, 2020.
  104. MIHOK, T.; HREŠKO ŠAMUDOVSKÁ, A.; BUJŇÁK, L.; TIMKOVIČOVÁ LACKOVÁ, P.
  105. Determination of buffering capacity of the selected feeds used in swine nutrition. Journal of
  106. Central European Agriculture, v.23, n.4, p.732-738, 2022.
  107. MIKUŁA, R.; PSZCZOLA, M.; RZEWUSKA, K.; MUCHA, S.; NOWAK, W.; STRABEL, T.
  108. The effect of rumination time on milk performance and methane emission of dairy cows fed
  109. partial mixed ration based on maize silage. Animals, v.12, n.1, p.50, 2022.
  110. MIZRAHI, I.; WALLACE, R.J.; MORAIS, S. The rumen microbiome: balancing food security
  111. and environmental impacts. Nature Reviews Microbiology, v.19, n.9, p.553-566, 2021.
  112. MOHARRERY, A. The determination of buffering capacity of some ruminant’s feedstuffs and
  113. their cumulative effects on TMR ration. American Journal of Animal and Veterinary
  114. Sciences, v.2, n.4, p.72-72, 2007.
  115. MONTAÑO, M.F.; CHIRINO, J.O.; SALINAS-CHAVIRA, J.; ZINN PAS, R.A. Ruminal
  116. alkalizing potential of brucite and sodium bicarbonate in feedlot cattle diets. Applied Animal
  117. Science, v.38, n.4, p.326-334, 2022.
  118. MONTEIRO, H.F; FACIOLA, A.P. Ruminal acidosis, bacterial
  119. lipopolysaccharides. Journal of Animal Science, v.98, n.8, p.1-9, 2020.
  120. changes,
  121. and
  122. NEVILLE, E.W.; FAHEY, A.G.; GATH, V.P.; MOLLOY, B.P.; TAYLOR, S.J.; MULLIGAN,
  123. F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and
  124. sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. Journal of
  125. Dairy Science, v.102, n.9, p.8027-8039, 2019.
  126. OETZEL, G.R. Subacute ruminal acidosis in dairy herds: physiology, pathophysiology,
  127. milk fat responses, and nutritional management, Vancouver, BC, Canadá. In: 40th Annual
  128. Conference, 40, 2007, Anais… Vancouver: American Association of Bovine Practitioners,
  129. v.40, p.89-119, 2007.
  130. PALMONARI, A.; FEDERICONI, A.; CAVALLINI, D.; SNIFFEN, C.J.; MAMMI, L.;
  131. TURRONI, S.; D’AMICO, F.; HOLDER, P.; FORMIGONI, A. Impact of molasses on ruminal
  132. volatile fatty acid production and microbiota composition in vitro. Animals, v.13, n.4, p.728,
  133. PHESATCHA, K.; PHESATCHA, B.; WANAPAT, M; CHERDTHONG, A. The effect of
  134. yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native
  135. beef cattle. Animals, v.12, n.1, p.53-63, 2022
  136. PRASANTH, C.R.; AJITHKUMAR, S. Effect of sub-acute ruminal acidosis (SARA) on milk
  137. quality and production performances in commercial dairy farms-A review. International
  138. Journal of Science, Environment and Technology, v.5, n.6, p.3731-3741, 2016.
  139. SHI, W.; HAISAN, J.; INABU, Y.; SUGINO, T.; OBA, M. Effects of starch concentration of
  140. close-up diets on rumen pH and plasma metabolite responses of dairy cows to grain challenges
  141. after calving. Journal of Dairy Science, v.103, n.12, p.11461-11471, 2020.
  142. SOLTIS, M.P.; MOOREY, S.E.; EGERT-McLEAN, A.M.; VOY, B.H.; SHEPHERD, E.A.;
  143. MYER, P.R. Rumen biogeographical regions and microbiome variation. Microorganisms,
  144. v.11, n.3, p.747-758, 2023.
  145. SOUZA, A.O.; TAVEIRA, J.H.S.; FERNANDES, P.B.; COSTA, K.A.P.; COSTA, C.M.;
  146. GURGEL, A.L.C.; SILVA, A.C.G.; COSTA, J.V.C.P. Chemical composition and fermentation
  147. characteristics of maize silage with citrus pulp. Revista Brasileira de Saúde e Produção
  148. Animal, v.23, n.6, p.e21352022, 2022.
  149. SUARJANA, I.G.K; PG, K.T.; SUDIPA, P.H. Characteristics of rumen fluid, pH and number
  150. of microbia. Journal of Veterinary and Animal Sciences, v.4, n.1, p.6-10, 2021.
  151. SUN, X.; CHENG, L.; JONKER, A.; MUNIDASA, S.; PACHECO, D. A review: Plant
  152. carbohydrate types—The potential impact on ruminant methane emissions. Frontiers in
  153. Veterinary Science, v.9, n.1, p.880115-880129, 2022.
  154. UNGERFELD, E.M.; CANCINO-PADILLA, N.; VERA-AGUILERA, N.; SCORCIONE,
  155. M.C.; SALDIVIA, M.; LAGOS-PAILLA, L.; VERA, M.; CERDA, C.; MUÑOZ, C.;
  156. URRUTIA, N.; MARTÍNEZ, E.D. Effects of type of substrate and dilution rate on fermentation
  157. in serial rumen mixed cultures. Frontiers in Microbiology, v.15, n.1, p.1356966-1356986,
  158. VARGAS, J.E.; LÓPEZ-FERRERAS, L.; ANDRÉS, S.; MATEOS, I.; HORST, E.H.; LÓPEZ,
  159. S. Differential diet and pH effects on ruminal microbiota, fermentation pattern and fatty acid
  160. hydrogenation in RUSITEC continuous cultures. Fermentation, v.4, n.4, p.320-338, 2023.
  161. VASILEVSKIY, N.V.; YELETSKAYA, T.A. Physiological aspects of complete mixed diet
  162. digestion in complex stomach of ruminants on the example of cattle (Bos taurus taurus).
  163. Agricultural Biology, v.54, n.4, p.787-797, 2019.
  164. VENTER, C. The role of particle length in feed rations. Stockfarm, v.10, n.5, p.38-39, 2020.
  165. WANAPAT, M.; VIENNASAY, B.; MATRA, M.; TOTAKUL, P.; PHESATCHA, B.;
  166. Ampapon, T.; WANAPAT, S. Supplementation of fruit peel pellet containing phytonutrients to
  167. manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein
  168. synthesis. Journal of the Science of Food and Agriculture, v.101, n.11, p.4543-4550, 2021.
  169. WANG, L.; ZHANG, G.; LI, Y.; ZHANG, Y. Effects of high forage/concentrate diet on volatile
  170. fatty acid production and the microorganisms involved in VFA production in cow rumen.
  171. Animals, v.10, n.2, p.223-234, 2020a.
  172. WANG, L.; LI, Y.; ZHANG, Y.; WANG, L. The effects of different concentrate-to-forage ratio
  173. diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle.
  174. Animals, v.10, n.6, p.957-974, 2020b.
  175. XIAO, J.; CHEN, T.; ALUGONGO, G.M.; KHAN, M.Z.; LI, T.; MA, J.; LIU, S.; WANG, W.;
  176. WANG, Y.; LI, S.; CAO, Z. Effect of the length of oat hay on growth performance, health
  177. status, behavior parameters and rumen fermentation of holstein female calves. Metabolites,
  178. v.11, n.12, p.890, 2021.
  179. ZAPATA, O.; CERVANTES, A.; BARRERAS, A.; MONGE-NAVARRO, F.; GONZÁLEZ-
  180. VIZCARRA, V.M.; ESTRADA-ANGULO, A.; URÍAS-ESTRADA, J.D., CORONA, L.;
  181. ZINN, R.A.; MARTÍNEZ-ALVAREZ, I.G.; PLASCENCIA, A. Effects of single or combined
  182. supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and
  183. total tract digestion in lambs. Small Ruminant Research, v.204, n.1, p.106538-106543, 2021.
  184. ZHANG, Z.; LI, Y.; ZHANG, J.; PENG, N.; LIANG, Y.; ZHAO, S. High-Titer lactic acid
  185. production by Pediococcus acidilactici PA204 from corn stover through fed-batch
  186. simultaneous saccharification and fermentation. Microorganisms, v.8, n.10, p.1491-1499,